© 2001 Blackwell Science

Vox Sanguinis

Receptor-mediated haemagglutination screening and reduction in the viral load of parvovirus B19 DNA in immunopurified Factor VIII concentrate (Cross Eight M®)

Y. Takeda¹, A. Wakisaka¹, K. Noguchi¹, T. Murozuka¹, Y. Katsubayashi¹, S. Matsumoto¹, T. Tomono¹ & K. Nishioka² ¹The Japanese Red Cross Plasma Fractionation Center, Chitose, Hokkoido, Japan

²The Japanese Red Cross Society, Tokyo, Japan

Human parvovirus B19 (B19) causes erythema infectiosum in childhood. In patients with haemolytic anaemia, it occasionally causes a transient aplastic crisis. It can harm immunocompromised patients, and cause fetal death in pregnant women. Plasma collected from regular blood donors and pooled for fractionation usually contains B19 DNA. B19 infection via blood products prepared from such contaminated plasma is a serious problem. B19 is difficult to inactivate during the preparation of blood fractions as it is a non-enveloped virus and relatively resistant to heat and solvent/detergent. Although nanofiltration with a pore size of less than 15 nm removes B19 from some blood products, so far it has been difficult to work with such a small pore size for filtration of most plasma derivatives. To minimize the risk of transmission of B19, it is important to screen out blood containing B 19 and to develop effective B19 elimination methods in manufacturing.

In 1998, the Japanese Red Cross (JRC) began nationwide screening of all donated blood units for B19 by using receptor-mediated haemagglutination (RHA). (This had already been implemented in 1997 on a trial basis.) As the P-antigen on human erythrocyte membranes is a receptor for B19 [1], the presence of B19 can be determined by agglutination of glutaraldehyde-treated human erythrocytes [2]. RHA is simple and easy to implement in conventional viral screening, with a sensitivity of = 10⁵ copies/ml. All voluntarily donated blood units at each blood centre were screened by RHA using a method described previously [2], and RHA-positive units were excluded from the source plasma for fractionation.

We measured the amount of B19 DNA using the polymerase chain reaction (PCR). Briefly, DNA was extracted from 100 µl of plasma by phenol-chloroform extraction after treatment with proteinase K and sodium dodecyl sulphate (SDS). DNA was amplified by nested PCR using primer, as described by Shade et al. [3]. Test samples were serially diluted 10-fold and the final dilution that was positive by PCR was used as the virus titre (PCR unit/ml). For example, 3 PCR units/ml means

that the PCR is positive when a 100-µl sample at a 1:100 dilution is tested and negative when a 100-µl sample at a 1:1000 dilution is tested. Because the 95% cut-off value of our PCR against the World Health Organization (WHO) International Standard (National Institute for Biological Standards and Control (NIBSC), UK code 99/800) is 10⁶⁻⁶⁴ dilution, 1 (= 10°) PCR unit/ml corresponds to 38 IU/ml.

RHA screening for B19, and subsequent exclusion of B19-positive units, markedly reduced the viral load in the source plasma. The difference in plasma viral load before and after implementation of RHA was statistically significant (P < 0.001). Figure 1 shows the amounts of B19 DNA in the batch of source plasma. Each batch of source plasma contained 1500 l of pooled plasma from = 10 000 non-remunerated voluntary donors. In 112 batches of source plasma in 1996, before RHA screening had been introduced, the mode B19 titre was 10^8 PCR units/ml, and 55% of batches were contaminated with more than 10^6 PCR units/ml of B19.

By contrast, after we implemented screening in 1998, the mode B 19 titre decreased to 10² PCR units/ml. No detectable B 19 was found in 18 batches (5%), and 49% of the batches had fewer than 10² PCR units/ml. In 1999, no detectable B 19 was found in 16% of batches, and 69% had fewer than 10² PCR units/ml. Nonetheless, six batches (2·2%) still contained at least 10⁶ PCR units/ml [4].

To reduce the B19 viral content of the final Factor VIII product (Cross Eight M*; JRC) from lot No. 2M181 (prepared June 19, 1997) to 2M209 (prepared March 16, 1998), we first introduced nanofiltration using Planova 35N (Asahikasei Corp., Tokyo, Japan). The B19 DNA content of the final Factor VIII product was reduced significantly by this procedure, but was still present in 26 out of 29 lots, as shown in Fig. 2. After implementation of RHA screening for all potential donors of source plasma, B19 DNA was found in two out of 12 lots prepared between March 1998 and June 1998. After that time, B19 DNA could not be detected in any of the final products of 51 lots of Factor VIII prepared from RHA-screened plasma. Even after dissolving the Factor VIII specimen in only 1 ml of water instead of in the prescribed 10 ml for PCR (i.e. a 10-fold concentrated solution), B19 DNA was not detected in any of 36 lots. We then analysed log-reduction rates by monoclonal immunoadsorption and passage through a cation-exchange column. The logreduction rates were estimated as 4.9 and 1.9 respectively, giving a combined total of 6.8. Therefore, the residual viral load in RHA-screened source plasma could be effectively removed during preparation of Factor VIII. Nucleic acid amplification testing (NAT) of B19 might be considered for

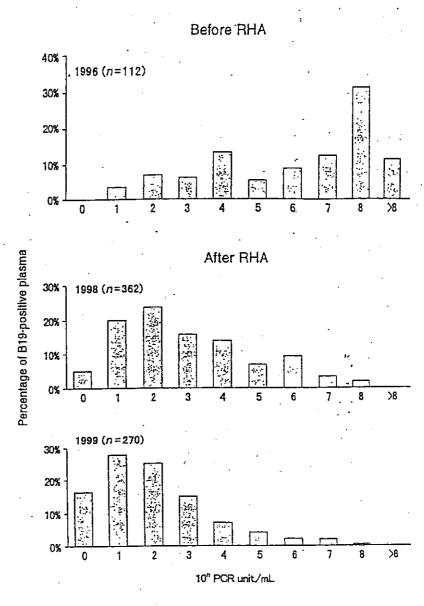


Fig. 1 Parvovirus B19 levels in the pooled source plasma for fractionation.

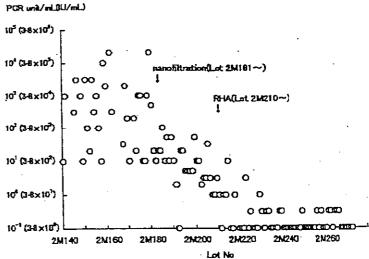


Fig. 2 Levels of parvovirus B19 DNA in Factor VIII concentrate (Cross Eight M®).

© 2001 Blackwell Science Ltd. Vox Sanguinis (2001) 81, 266-268

future reduction of the viral load in source plasma. However, RHA screening for B19 is still required to avoid cross-contamination or carry-over of the virus prior to NAT testing.

We conclude that RHA screening of individual blood donor specimens is a simple and effective procedure for eliminating high-titre B19 virus from source plasma for fractionation, as well as from blood components for transfusion.

Acknowledgements

We are grateful to Koji Sotoyama, Nariaki Kimura, Masako Shimohayashi and Motonaka Aoki for their skilful assistance.

References

- 1 Brown KE, Anderson SM, Young MS: Erythrocyte P antigen: receptor for B19 parvovirus. Science 1993; 262:114-117
- 2 Wakamatsu C, Takakura F, Kojima E, Kiriyama Y, Goto N,

- Matsumoto K, Oyama M, Sato H, Okochi K, Maeda Y: Screening of blood donors for human parvovirus B19 and characterization of the results. *Vax Sang* 1999; 76:14-21
- 3 Shade RO, Blundell MC, Contmore SF, Tattersall P, Astell CR: Nucleotide sequence and genome organization of human parvovirus B19 isolated from the serum of a child during aplastic crisis. J Virol 1986; 58:921-936
- 4 Sakata H, Ihara H, Sato S, Kato T, Ikeda H, Sekiguchi S: Efficiency of donor screening for human parvovirus B19 by receptor-mediated hemagglutination assay method. Vax Sang 1999; 77:197-203

Tsugikazu Tomono, PhD
Vice Director
Japanese Red Cross Plasma Fractionation Center
1007-31 Izumisawa
Chitose 066-8610
Japan
E-mail: tomono@pfc.jrc.or.jp

Japanese Journal of Transfusion Medicine, Vol. 48. No. 1 48(1): 27-31, 2002

原 著

献血血液の RHA 検査による第 VIII 因子製剤 (クロスエイト M™) 原料血漿からのパルボウイルス B19 除去効果

芳於 田海 阿部 牛馬 青木 玄仲 外山 幸司 成明 雅子 泰子 木村 下林 永野 勝林 祥郎 室塚・剛志 脇坂 阴美 伴野 丞計 日本赤十字社血漿分画センター

> (平成13年9月27日受付) (平成13年11月12日受理)

RHA SCREENING AND REDUCTION OF PARVOVIRUS B19 DNA FROM FACTOR VIII CONCENTRATE (CROSS EIGHT M™)

Yoshio Takeda, Ikuma Abe, Motonaka Aoki, Koji Sotoyama, Nariaki Kimura, Masako Shimobayashi, Yasuko Nagano, Yoshiro Katsubayashi, Takashi Murozuka,
Akemi Wakisaka and Tsugikazu Tomono
Japanese Red Cross Plasma Fractionation Center

Since September 1997 the Japanese Red Cross has conducted a nationwide complete screening of human parvovirus B19 (B19) for all donated blood units by the receptor-mediated hemagglutination (RHA) method. RHA-positive units were excluded from source plasma for fractionation. The amounts of B19 DNA in pooled plasma and in factor VIII concentrates (Cross Eight M, plasma derived and monoclonal purified) were measured using a PCR method. All 112 batches of pooled plasma tested in 1996, before implementation of RHA screening, were B19 DNA-positive, with 83% of these contaminated with more than 3.8×10^5 IU/ml of B19 DNA. In contrast, after implementing RHA screening, no detectable levels of B19 DNA were observed in 5% (1998), 16% (1999), 21% (2000) and 21% (2001) of batches, and batches contaminated with more than 3.8×10^5 IU/ml of B19 DNA decreased to 18% (2001). B19 DNA content in the final products of factor VIII concentrate were reduced significantly when RHA-screened source plasma were used. Since September 1998, B19 DNA has not been detected in any of 78 lots of final products. Furthermore, no B19 DNA could be detected in any of 63 lots even in 1: 10 concentrated solution. RHA screening for B19 has markedly reduced the viral load in source plasma for fractionation in Japan.

Key words: Human parvovirus B19, Donor screening, Receptor-mediated hemagglutination (RHA), Source plasma for fractionation, Plasma-derived factor VIII concentrate

はじめに

ヒトパルボウイルス B19 (以下 B19 と略す) は 伝染性紅斑の原因ウイルスであり、健常人で免疫 抗体を持たない場合、一般的には一過性の風邪様 症状を呈するのみであるが、慢性溶血性貧血や免 疫不全患者では時に重篤な急性赤芽球痨を引き起こすことがある。また免疫抗体を有さない女性の妊娠時には流産に至ったり、その児には胎児水腫を起こすことがあり、子宮内死亡胎児の15%がB19DNA陽性であったとの報告がある。

B19 はエンベロープを持たない直径 18~26nm の小型ウイルスで、加熱(60℃30分)、酸(pH3)、クロロホルム、有機溶剤/界面活性剤処理に抵抗する"。第 IX 因子製剤ではウイルス除去膜による B19 の効果的なウイルス除去がなされているが、多くの血漿分画製剤には孔径の小さな膜の導入が難しい。

製造工程中でのB19 除去が困難であることから、原料血漿へのB19 負荷を減らすことを目的に、赤十字血液センターでは1997 年よりすべての献血血液について Receptor Mediated Hemagglutination (RHA) 検査法によるB19 スクリーニング検査を実施している。我々はRHA 検査導入前後の第 VIII 因子製剤用原料血漿プールと第 VIII 因子製剤のB19 DNA 量を測定しその効果について評価したので報告する。

材料と方法

1. 第 VIII 因子製剤の原料血漿

血漿分画製剤の原料となる献血血液は、血液センターにおける問診、血清学的検査(HBs 抗原、抗 HBc 抗体、抗 HIV-1/2 抗体、抗 HCV 抗体、抗 HTLV-1 抗体、B19、ALT、梅毒)、NAT センターにおけるプール検体 NAT (HBV、HIV-1, HCV.1999 年より) 陰性のものであり、更に原料血漿については 6 カ月間の貯留保管を経て安全が確認された血漿だけが製造に供される.

日本赤十字社血漿分画センターでは貯留保管を終えた血漿を、約5,000人から10,000人分混合してプール血漿とする。このプール血漿から第VIII 因子製剤の中間原料であるクリオプレシピテートと、人血清アルブミンの原料となる上清(脱クリオ血漿)を分離する。本報告ではRHA 検査導入以前の献血血液で製造したプール血漿112バッチ(1996年)およびRHA 検査済み献血血液で製造した1011バッチ(1998年1月から2001年7月に製造、献血血液約700万人分に相当)についてB19 DNA を定量して比較した。

2. 第 VIII 因子製剤

日本赤十字社の第 VIII 因子製剤クロスエイト M について調べた. その製造工程概要は次のとお りである. すなわち1ロットのクロスエイト M の製造にはプール血漿より得られたクリオプレシピテート数バッチ分(約8万人分の血漿)が使用される. クリオプレシピテートの溶解液を有機溶剤/界面活性剤で処理し,イムノアフィニティクロマトグラフィーで第VIII 因子を精製し,不純物を除去する. 次に孔径35nmのウイルス除去膜でろ過し,イオン交換クロマトグラフィーで更に精製する. 原料血漿にウイルスが混入していればこれらの工程で不活化/除去される. その後充填,凍結乾燥して製品となる.

ウイルス除去膜は Lot 2M181 (1997年6月製造) から製造工程に導入した。Lot 2M210 (1998年3月製造) から RHA 検査済みの原料血漿を製造に使用した。

3. RHA 檢查法

RHA 検査法は B19 が血液型 P抗原をレセプターとする。ことを利用した検査法で、グルタルアルデヒドで固定した P抗原陽性のヒト O型赤血球を、pH 5.0~5.8 で血清と反応させ、B19 があれば P抗原と結合して血球凝集反応を呈する。日本赤十字社の血液センターではオリンパス社製全自動凝集反応検査装置 PK7200 を使用して1997年9月よりすべての献血血液について RHAスクリーニング検査を開始した。

4. NATによる B19 DNA の定量

検体 100µl を PK/SDS 処理 後 Phenol/Chloroform で抽出し、その全量を Nested PCR 法で VP 1 領域を増幅した。 増幅産物を電気泳動後、Ethidium Bromide 染色し、バンドを認めたものを 陽性とした。定量法は限界希釈法を用い、抽出物の再溶解液を 10 倍階段希釈して増幅し、陽性となる最大希釈倍率を求めた。 NAT の検出感度は国際標準品(WHO International Standard for Parvovirus B19 DNA NAT Assays、 NIBSC Code 99/800、5×10⁶ International Unit/vial)を使用して測定し、95% 検出限界は 38IU/ml であった。

クロスエイト M は通例注射用水 10mI で再溶解するが、注射用水 1mI で再溶解することで簡便に 1:10 に濃縮した試料を調製して B19 DNA 定量を行った。

図 1 Levels of human parvovirus B19 DNA in pooled plasma for fractionation. Data for 1996 show batches of plasma pools without RHA screening, While batches thereafter were screened.

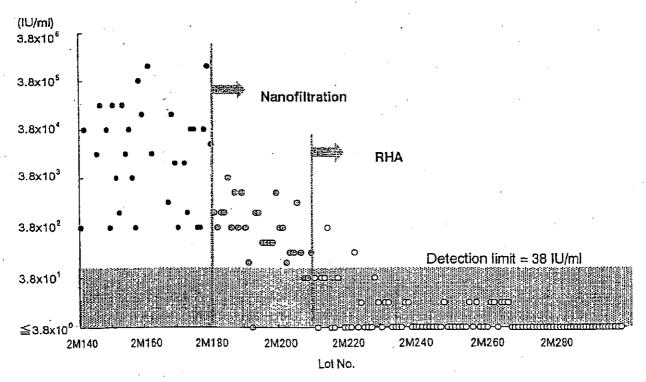


図 2 Human parvovirus B19 DNA in plasma-derived monoclonal purified Factor VIII concentrate (Cross Eight M).

Circles in the bottom shaded area show that parvovirus B19 DNA levels in the final products below the PCR detection limit. Circles on the horizontal axis show that even parvovirus B19 DNA levels in the concentrated solution of final products (1:10) were below the PCR detection limit.

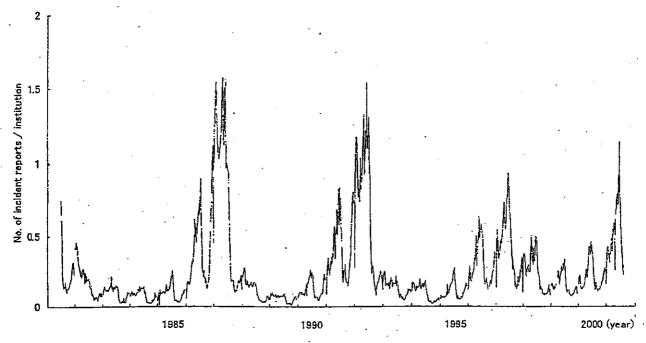


図 3 Weekly incident rates of erythema infectiosum at various fixed observation sites. Infectious Diseases Weekly Report Japan (National Institute of Infectious Diseases. Infectious Disease Surveillance Center).

結 果

プール血漿の B19 DNA 量を測定した結果を図 1 に示した、RHA 検査以前の 1996 年に製造したプール血漿は、すべて B19 DNA 陽性で、3.8×10⁶ IU/m/以上のものが全体の 83% を占めていた、RHA 検査導入後からプール血漿中の B19 DNA 量は減少し、1998 年には 5% であった検出限界以下のプール血漿が 2000 年には 21% に増加した、反対に 3.8×10⁶ IU/m/以上のプール血漿は 1998年には 35% あったが、2000年には 18% まで減少した、献血血液に RHA 検査を導入することで、原料血漿中の B19 DNA 量が減少した.

日本赤十字社の第 VIII 因子製剤, クロスエイト M の製品中の B19 DNA 定量結果を図 2 に示した.製造工程にウイルス除去膜を加えた Lot 2M 181 以降で、製品中の B19 DNA 量が減少している. それでも RHA 検査導入前は製品の 90% が B 19 DNA 陽性であったが、RHA 検査済みの原料を用いた Lot 2M210 からは、製品中の B19 DNA 量は更に減少した. 1998年9月以降に製造した 78 ロットの製品で検出限界以下となり、そのうちの 63 ロットは検体を 1:10 に機縮しても B19 DNA

を検出しなかった.

老 窓

日本の献血者における B19 陽性率は推定 0.6~ 0.8% と報告されている"。 感染症サーベイランスの報告によれば 1987 年と 1992 年に伝染性紅斑の大流行があり、1997 年には弱い流行があった(図 3). 今回検査した 1998~2001 年は間駄期に相当し、必ずしも流行期に反映できない面もあるが、献血血液について RHA 検査で B19 抗原をスクリーニングすることによって、血漿分画製剤の原料血漿の B19 DNA を著しく減少させることができた.

一方RHA 検査はその原理上 3~5 日間のウイルス血症期には有効だが、それに続いて B19 抗体の産生が始まると (抗原抗体複合体期) B19 の receptor である P 抗原と抗体が競合し、RHA 反応は著しく阻害される。即ちこの期間に献血された血液は RHA 検査では検出することができない。しかしながら今回測定されたプール血漿の B19 DNA 濃度を見ると、必ずしも抗原抗体複合期に献血された血液が RHA 検査をすり抜け、プールされたことが原因と言うことはできない。例えば

2001年を例に見ると, 10°IU/ml以上の B19 DNA . を含むプール血漿が 193 バッチ中 14 バッチあった. ウイルス血症期におけるウイルス量は 10~10 copies/ml であるのに対し, 抗原抗体複合体期のウイルス量は 105~6 copies/ml 以下と遥かに少なく500, B19 DNA 濃度の高いこの 14 バッチについては抗原抗体複合物期に献血された血液が多数プールされたとするよりは, 少数 (少なくとも 14 ユニット) のウイルス血症期のものが入ったためと思われる. すなわちウイルス血症期といえどもRHA 検査で陰性とされる場合があり,精度管理と共にこの検査漏れを無くすことが RHA 検査の今後の課題である.

現在各国でB19スクリーニングに対する取り組みが行われている。アメリカではFDAから血漿分画製剤に使われるプール血漿のB19DNA量を10'geq/ml以下にするよう見解が示された(CBER(FDA):第64回血液製剤諮問委員会(9/16/99)議事録、p144-222).また、欧米の血漿分画製剤企業の集まりであるPPTA(Plasma Protein Therapeutics Association)は自主的に、2002年6月以降にプール血漿のB19DNA量を10⁵IU/ml以下にする目標を立てている(Announce、"PPTA Voluntary Standard Parvovoirus B19"、March 2001.www.pptaglobal.org/safety/index.htm)

このような世界的な血漿分画製剤原料血液のB 19 低減化の流れにあっては、先述した RHA 検査の課題が解決できないときには、日本も NATによる B19 スクリーニングを考慮する必要がある. NAT スクリーニングに関しては、すでに日本赤十字社が世界に先駆けて、血漿分画製剤用原料を含むすべての献血血液に対して HBV、HIV-1、HCV について実施し、ノウハウを蓄積している. NAT スクリーニングを血清学的検査と組み合わせることで、無用な検査や検体汚染を防ぎ、効率性を高めていることもその一つである. B19 の場

合その陽性率の高さと、ウイルス血症におけるウイルス量の多さ¹⁰が NAT スクリーニングの障害になるが、RHA 検査はその事前スクリーニングとして有効である.

本報告は日本赤十字社血液事業部,日本赤十字社中央血液センター,北海道,大阪府,福岡県各赤十字血液センターのご指導のもとに実施した検査に基づくものです。本論文の要旨は第49回日本輸血学会総会において報告しました。

捷 文

- Tolfvenstam T., et al.: Frequency of human Parvovirus B19 infection in intrauterine fetal death. Lancet, 357: 1494—1497, 2001.
- 2) 松永泰子: ヒトパルボウイルス B19 感染と血液 疾患. immunohaematology, 11(1): 9-13, 1989.
- Brown, K.E., Anderson, S.M. and Young, N.S.: Erythrocyte P antigen: Cellular receptor for B19 parvovirus. Science, 262: 114—117, 1993.
- Sato H., et al.: Screening of blood donors for human Parvovirus B19. Lancet, 346: 1237—1238, 1995.
- 5) 佐藤博行: 最近話題の輸血後感染症. ヒトバルボ ウイルス B19 とその感染症について. 日本輸血学 会誌, 42(3): 74-82, 1996.
- 6) Shade, R.O., Blundell, M.C., Contmore, S.F., et al.: Nucleotide sequence and genome organization of human parvovirus B19 isolated from the serum of a child during aplastic crisis. J. Virol., 58 (3): 921—936, 1986.
- Yoto, Y., Kudoh, T., Haseyama K., et al.: Incidence of human parvovirus B19 DNA detection in blood donors. Br. J. Hernatol., 91: 1017—1018, 1995
- 8) 佐藤進一郎, 他: Receptor-mediated hemagglutination (RHA) によるヒトパルボウイルス B19 抗原スクリーニングの評価検討. 日本輸血学会 誌, 42(5): 231—232, 1996.
- 9) 佐藤博行:編集者への手紙に対するコメント、日本輸血学会誌,42(6):299-300,1996。
- 10) 布上 薫:ヒトパルポウイルス感染の臨床と疫 学. ウイルス, 37(2):159-168,1987.