				料明包空的开示式、肝刑藏除 自匕
	ICR マウス	3600	4320	筋攣縮、自発運動減少、歩行失調、四肢麻痺、正向反射 消失、呼吸不規則、呼吸深大・困難、軟便、下痢、体温 降下、立毛、尾部先端の黒色化及び脱落 部検所見では胃底腸部除胡漠及び外腸・胡萸面に充・出血、 尾部先端の脱落
経皮	SD ラット	>2000	>2000	症状なし
程及	ICR マウス	>5000	>5000	症状なし
		LC ₅₀ (mg	/L)	体重减少、体重物时制、自発重抵下、尿失禁、呼吸
吸入	SD ラット	>2750	>2750	不規則、呼吸深大・困難、鼻汁、鼻周囲の汚れ、流延、 眼周囲の暗赤色物付着、歩行失調、立毛 剖検所見では刑臓表面の黄白色病変、肝細胞質空胞形成、壊死性病変、線維化

(2) 急性毒性試験(原体混在物及び代謝物)

ウニコナゾールPの原体混在物である Z 体、代謝物である CYC·4Cl について、ICR マウスを用いた急性経口毒性試験が実施された。

各試験の結果は表4に示されている。(参照2)

投与経路	化合物	動物種	LD50 (mg/kg 体重)		観察された症状					
			雄	雌						
経口	Z体	ICR マウス			体重増加抑制及び体重					
			> 0000	. 0000	低下、自発運動減少、					
			>2000	>2000	歩行失調、四肢麻痺、正					
					向反射消失、呼吸不規則					
	CYC·4Cl				自発運動減少、歩行失					
			>5000	>5000	調、四肢麻痺、呼吸不規					
					則					

表 4 原体混在物及び代謝物の急性毒性試験結果概要

10. 眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギを用いた眼一次刺激性試験及び皮膚一次刺激性試験が実施された。結果から、ウニコナゾール P には眼に対しごく軽度の刺激性があると判断されたが、皮膚刺激性は認められなかった。

Hartley モルモットを用いた皮膚感作性試験 (Buehler 法) の結果から、ウニコナゾール P は皮膚感作性は陰性と判断された。 (参照 2、3)

11. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)

SD ラット (一群雌雄各 15 匹) を用いた混餌 (原体:0,30,100,1000 及び 3000ppm) 投与による 90 日間亜急性毒性試験が実施された。

1000ppm 以上投与群で雌雄とも体重増加抑制、摂餌量減少、肝腫大、肝重量増加、甲状腺小型濾胞数増加及び細胞質内空胞化が見られた。またこの用量群の雄及び 3000ppm 投与群雌で貧血を示す所見(赤血球、ヘマトクリット及びヘモグロビン減少)が見られた。100ppm 以上投与群雄では甲状腺細胞質内空胞化が見られた。

本試験の無毒性量は、雄 30ppm(2.25 mg/kg 体重/日)、雌 100ppm(8.36 mg/kg 体重/日)と考えられた。(参照 2)

(2)90 日間亜急性毒性試験(イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いた強制カプセル経口(原体: 0,5,20,80 及び 320 mg/kg 体重/日) 投与による 90 日間亜急性毒性試験が実施された。

320 mg/kg 体重/日投与群雄一頭が衰弱により死亡した。320 mg/kg 体重/日投与群雄及び 80 mg/kg 体重/日以上投与群雌で体重増加抑制及び摂餌量減少が見られた。BSP(ブロムスルフォレイン)停滞率試験による肝機能検査を実施したところ、80 mg/kg 体重/日以上投与群雌雄で停滞率の増加が認められた。また同群雌雄で ALP、ALT の増加が見られた。20 mg/kg 体重/日以上投与群雌雄で肝重量の増加傾向が認められた。

本試験の無毒性量は雌雄とも 5 mg/kg 体重/日であると考えられた。(参照 2、3)

12. 慢性毒性試験及び発がん性試験

(1) 1年間慢性毒性試験(イヌ)

ビーグル犬(一群雌雄各6匹)を用いた強制カプセル経口(原体:0, 2, 20及び 200 mg/kg体重/日) 投与による 1年間慢性毒性試験が実施された。

200 mg/kg 体重/日投与群雌雄で体重増加抑制、ALT の増加、肝の胆汁色素増加、肝細胞肥大が見られた。また同群雌で肝重量の増加及び血小板の増加が見られたが、血小板の増加に関しては毒性学的意義は少ないと考えられた。20 mg/kg 体重/日以上投与群雌雄で ALP の増加、同群雄で肝重量の増加が、同群雌で胸腺の重量減少が認められた。

本試験の無毒性量は雌雄とも 2 mg/kg 体重/日と考えられた。(参照 2、3)

(2) 18 ヶ月慢性毒性/発がん性併合試験 (ラット)

SD ラット(一群雌雄各 $40\sim50$ 匹)を用いた混餌(原体:0、10、40、200 及び 1000ppm) 投与による 18 ヶ月間慢性毒性/発がん性併合試験が実施された。

対照群と各投与群間の死亡率に有意差は認められなかった。1000ppm 投与群雌雄で体重増加抑制、肝褪色部増加、肝重量増加、同群雌で血中コレステロールの増加及び肝細胞単細胞壊死が見られた。200ppm 以上投与群雌雄では肝細胞肥大、肝細胞空胞化が見られた。

本試験の無毒性量は、雌雄とも 40ppm(雄 1.64 mg/kg 体重/日、雌 2.17 mg/kg 体重/日)と考えられた。発がん性は認められなかった。(参照 2、3)

(3) 2年間発がん性試験(マウス)

ICR マウス (一群雌雄各 30~50 匹) を用いた混餌 (原体:0、10、40、200 及び 1500ppm) 投与による 2 年間発がん性試験が実施された。

1500ppm 投与群雌雄で肝腫大、肝重量の増加、びまん性肝細胞肥大、びまん性肝細胞空胞化、肝細胞単細胞壊死が認められ、また同群雄で肝腫瘤及び褪色部の発生頻度の増加及び明/好酸性変異肝細胞巣の増加が認められた。同群雄では肝細胞腺腫の発生頻度が増加したが、生存率が対照群に比べ有意に増加していること及び腫瘍のほとんどが試験の最終時に認められたことから、程度は非常に弱いものの検体投与に起因する肝発がん性が疑われた。

本試験における無毒性量は、雌雄とも 200ppm (雄 27.4 mg/kg 体重/日、雌 35.0 mg/kg 体重/日)と考えられた。 ウニコナゾール P はマウスに対しごく弱い肝発がん性があると考えられた。 (参照 2)

13. 生殖発生毒性試験

(1) 2世代繁殖試験(ラット)

SD ラット (一群雌雄各 30 匹) を用いた混餌 (原体:0、15、150 及び 1500ppm) 投与による 2 世代繁殖試験が実施された。

本試験の無毒性量は、親動物では 1500ppm 投与群雌雄で体重増加抑制、摂餌量減少、 肝臓腫大、肝臓重量増加、肝細胞肥大、空胞化、壊死が認められ、児動物では 1500ppm 投与群で生存率低下、体重増加抑制が認められたので、一般毒性の無毒性量は親動物及 び児動物に対して 150ppm (P:雄 11.1 mg/kg 体重/日、雌 14.2 mg/kg 体重/日、F1:雄 11.2 mg/kg 体重/日、雌 12.7 mg/kg 体重/日)であると考えられた。繁殖能に対する影響は認められなかった。 (参照 2)

(2) 発生毒性試験 (ラット)

SD ラット (一群雌 25 匹) を用い、妊娠 $6 \sim 15$ 日に検体を強制経口 (原体: 0, 1, 5, 25 及び 50 mg/kg 体重/日) 投与して発生毒性試験が実施された。

母動物では 50 mg/kg 体重/日以上投与群で摂餌量減少が、25 mg/kg 体重/日以上投与 群で体重増加抑制が認められた。

胎児では 25 mg/kg 体重/日以上投与群で 14 肋骨の発生頻度増加が、50 mg/kg 体重/日投与群で頚肋出現頻度増加等骨格変異が認められた。

本試験における無毒性量は母動物、胎児とも 5 mg/kg 体重/日と考えられた。催奇形性は認められなかった。(参照 2、3)

(3)発生毒性試験(ウサギ)

NZW ウサギ (一群雌 16 匹) の妊娠 $7 \sim 19$ 日に検体を強制経口 (原体:0, 1,3,10 及び 20 mg/kg 体重) 投与し、発生毒性試験が実施された。

母動物では 20 mg/kg 体重/日以上投与群において体重増加抑制及び摂餌量減少が認められた。

胎児では、検体投与に起因した変化は認められなかった。

本試験における無毒性量は、母動物で 10 mg/kg 体重/日、胎児で 20 mg/kg 体重/日と考えられた。 催奇形性は認められなかった。 (参照 2)

14. 遺伝毒性試験

ウニコナゾールPの細菌を用いた DNA 修復試験、復帰突然変異試験、チャイニーズハムスターの卵巣由来(CHO·K1)細胞及びチャイニーズハムスター肺由来(CHL/IU)細胞を用いた *in vitro* 染色体異常試験、チャイニーズハムスター肺由来(V79)細胞を用いた遺伝子突然変異試験、チャイニーズハムスターの卵巣由来(CHO·K1)細胞を用いた姉妹染色分体交換試験、マウスの骨髄を用いた小核試験及びラットを用いた不定期 DNA 合成試験が実施された。結果は表 5 に示されている。チャイニーズハムスター卵巣由来の培養細胞を用いた染色体異常試験において弱い染色体異常誘発性が見られたが、他の試験では結果は全て陰性であったので、生体において問題になる遺伝毒性はないと考えられた。(参照 2、3)

表 5 遺伝毒性試験結果概要 (原体)

	試験	対象	処理濃度・投与量	結果
in vitro	DNA 修復試験	<i>Bacillus subtilis</i> H17、M45株	100~5000 μg/τ (λ/) (+/-S9)	陰性
	復帰突然変異試験	S. typhimurium TA98,TA100,TA1535,TA 1537,TA1538 株 E. coli WP2 uvrA 株	①50~2000 μg/7° ν-\ (-S9) ②100~5000 μg/7° ν-\ (+S9)	陰性
	染色体異常試験①	チャイニーズハムスター 卵巣由来(CHO·K1)細 胞		弱陽性 1)
	染色体異常試験②	チャイニーズハムスター 肺由来(CHL/IU)細胞	80~120 μg/mL (-S9、6 時間処理) 120~135 μg/mL (+S9、6 時間処理) 30~90 μg/mL (-S9、24 時間処理)	陰性 ¹⁾
	HGPRT 遺伝子突 然変異試験	チャイニーズハムスター 肺由来 (V79) 細胞	14.6~87.5μg/mL (+/-S9)	陰性
	姉妹染色分体交換 試験	チャイニーズハムスター 卵巣由来(CHO-K1)細 胞	14.6~87.5 μg/mL (+/-S9) 29.2~87.5 μg/mL (+S9)	陰性

in vivo	小核試験	ICR マウス	①0,400mg/kg 体重	
•		(一群雌雄各6匹)	(24~72 時間)	
			20,100,200,400	陰性 ²⁾
			mg/kg 体重	
			(72 時間)	
			単回腹腔内投与	
in vitro	不定期 DNA 合成試	SD ラット	0,300mg/kg 体重	
/in vivo	験	(一群雄 3 匹)	(12~48 時間)	陰性
			単回強制経口投与	

注) +/-S9: 代謝活性化系存在下及び非存在下

- 1) 染色体異常試験①は検体純度 75.4%、1987 年実施。②は検体純度 98.8%、2006 年実施
- 2) 400mg/kg 投与の 72 時間処理において有意な小核の増加が認められたが、同投与群において動物の死亡が認められたことなどから、ウニコナゾール P の直接的な作用にはよらない可能性が高いと考えられた。

ウニコナゾール P の原体混在物 (Z 体)及び代謝物 (CYC·4Cl) の細菌を用いた復帰突然変異試験、及び代謝物 (COOH·E) のチャイニーズハムスター肺線維芽細胞を用いた染色体異常試験が実施された。結果は表 6 に示されている。代謝物 (COOH·E) のチャイニーズハムスター肺線維芽細胞を用いた染色体異常試験において、代謝活性化系非存在下で染色体構造異常の出現頻度がわずかに増加した。 (参照 2)

表 6 遺伝毒性試験概要 (原体混在物及び代謝物)

	試験	対象	処理濃度	結果
in vitro	復帰突然変異試験	S. typhimurium	Z体(原体混在物):	
		TA98,TA100,TA153	47~1500 μg/プレート	陰性
		5,TA1537,TA1538 株	(+/-S9)	
		E. coli WP2 uvrA 株	CYC-4Cl(代謝物):	
			50~2000 μg/プレート	陰性
			(+/-S9)	
	染色体異常試験	チャイニーズハムス	COOH·E(代謝物):	
		ター肺(CHL)細胞	213~1700 μg/mL	
			(-S9、24 時間処理)	
			200~1600 μg/mL	陽性*
			(-S9、48 時間処理)	
			580~2320 μg/mL	
			(+/-S9、6 時間処理)	

注) +/-S9: 代謝活性化系存在下及び非存在下

※:代謝活性化系存在下では陰性

15. その他の試験ーウニコナゾール P の発がん性メカニズムに関する検討

(1) マウスにおける薬物代謝酵素誘導試験

ICR マウス(一群雄各 5 匹)を用い、ウニコナゾール P を $2\sim4$ 週間混餌 [原体:0、40、200 及び 1500ppm(2 週間投与群:5.04、22.9 及び 167mg/kg 体重/日、4 週間投与群 4.74、21.9 及び 156 mg/kg 体重/日に相当)] 投与し、薬物代謝酵素誘導試験が実施された。

高用量群では投与期間に関わらず肝重量の増加、肝ミクロソームタンパク量の増加、 肝臓におけるびまん性肝細胞空胞化、小葉中心性肝細胞肥大、単細胞壊死、巣状壊死が 認められた。また中用量群以上で投与期間にかかわらずチトクローム P-450 量の増加が 認められたが、ウェスタンブロッティング法で分子種を検討したところ、誘導される分 子種のパターンがマウス肝発がんに対してプロモーション作用を示すフェノバルビター ル (PB) における分子種のパターンと類似することが明らかとなった。

本試験において、ウニコナゾール P の酵素誘導に対する無影響量は 4.74 mg/kg 体重/日であった。 (参照 2)

(2) ウニコナゾール P の雄マウスにおける肝臓発がんメカニズム検討試験

ICR マウス(一群雄各 6 匹)を用い、ウニコナゾール P を $2\sim4$ 週間混餌[原体:0、40、200 及び 1500ppm (2 週間投与群:6.0、28.8 及び 223 mg/kg 体重/日、4 週間投与群:5.9、28.7 及び 217 mg/kg 体重/日に相当)]投与し、また発がん性を有する物質として、PB($75.2\sim76.1$ mg/kg 体重/日)、チオアセタミド(TA、 $0.04\sim0.05$ mg/kg 体重/日)を混餌投与、四塩化炭素(CCl_4 、 $600\sim1200$ mg/kg 体重/日)を強制経口投与して、マウスにおける肝臓発がんメカニズム検討試験が実施された。

肝臓重量の測定、肉眼的病理検査、病理組織学的検査、BrdU の免疫染色による細胞 増殖の評価、過酸化脂質及び還元型 GSH の測定による酸化ストレスの測定、肝臓中ア ポトーシスの測定、DNA チップを用いた肝臓の遺伝子発現解析を実施した。試験期間に かかわらず、TA 及び CCl4 投与群では肝細胞変性・壊死、細胞増殖亢進、還元型 GSH 増加が見られたのに対し、ウニコナゾール P 高用量及び PB 投与群では共通してみられ たのは肝細胞肥大であり、また還元型 GSH 増加は見られなかった。また細胞増殖亢進 及びアポトーシス誘導作用も TA 及び CCl4 投与群より弱いなど、異なる結果を示した。 ウニコナゾール P 高用量投与群では肝細胞空胞化、壊死も見られたがいずれも限局性の 変化であった。さらに DNA チップ解析の結果、ウニコナゾール P と PB は類似した遺 伝子発現変動パターンを示すことが明らかになった。発現上昇の著しい遺伝子は、ウニ コナゾールP及びPBともに薬物代謝酵素であり、その分子種はCYP2BあるいはCYP2C であった。従って、ウニコナゾール P 投与により見られたマウス肝発がんは PB と同様 に酵素誘導を介した結果生じた可能性が推察された。酵素誘導作用を有する薬剤のプロ モーション作用には閾値設定が可能であることから、ウニコナゾール P の作用に対して も閾値が設定できると考えられた。本試験において2週間投与群で200ppm以上投与群 において肝細胞肥大が観察されたことから、無影響量は40ppm(6.0 mg/kg 体重/日)と 考えられた。(参照2)

Ⅲ. 総合評価

参照に挙げた資料を用いて、農薬「ウニコナゾール P」の食品健康影響評価を実施した。 動物体内運命試験の結果、ウニコナゾール P は動物体内で速やかに代謝、排泄された。主 要な代謝物は COOH·E、CH₂OH·E、4·OH·E、CC 酸及びトリアゾールであった。植物体内 運命試験の結果における主要な代謝物は未変化体が大部分であり、その他 E/Z 異性体及び水 酸基、フェニル基、メチル基の酸化された代謝物が確認された。

ウニコナゾール P 及びウニコナゾール P 抱合体、 $1H\cdot 1,2,4$ トリアゾール抱合体、 $CYC\cdot 4Cl$ 体を分析対象とした作物残留試験を実施したところ、全ての化合物について、残留値は検出限界以下か検出されてもごく少量であった。

各種毒性試験結果から、催奇形性、繁殖能に対する影響及び生体において問題となる遺伝毒性は認められなかった。発がん性試験において、マウスの雄に肝細胞腺腫の発生増加が認められたが、発生機序は非遺伝毒性メカニズムであり、本剤の評価にあたり閾値を設定することは可能であると考えられた。

各種試験結果から、農産物の暴露評価対象物質をウニコナゾールP (親化合物のみ)と設定した。

評価に用いた評価書等に記載されている各試験の無毒性量等は表7に示されている。

食品安全委員会は、各試験で得られた無毒性量の最小値は、ラットにおける 2 年間慢性毒性/発がん性試験の 1.64mg/kg 体重/日であったので、これを根拠として、安全係数 100 で除した 0.016mg/kg 体重/日を一日摂取許容量(ADI)とした。

ADI 0.016 mg/kg 体重/日

(ADI 設定根拠資料) 2年間慢性毒性/発がん性試験

(動物種)ラット(期間)2年間

(投与方法) 混餌投与

(無毒性量) 1.64 mg/kg 体重/日

(安全係数) 100

暴露量については、当評価結果を踏まえて暫定基準値の見直しを行う際に確認することとする。

表7 各試験における無毒性量等の比較

動物	수표수	切り書(/1/大手/四)	無毒性量(mg/kg 体重/日) ¹⁾				
種	試験	投与量(mg/kg 体重/口)	農薬抄録	豪州			
ラット	90 口間亜急性	0,30,100,1000,3000ppm	雄:2.25	雄:2.25			
	毒性試験	雄: 0,2.25,7.48,73.0,228	雌: 8.36	雌:2.42			
		雌: 0,2.42,8.36,79.4,229					
			雄:甲状腺細胞質内空胞化	甲状腺組織病理学的変化			
			雌:休重増加抑制等	t# 1 00 0)			
	2年間慢性毒性	0, 10, 40, 200, 1000ppm	雄:1.64 2)	雄:1.86 2)			
	/発がん性併合	雄:0,0.42,1.64,8.29,43.1	雌:2.17 2)	雌:2.36 ²⁾			
	試験 3)	雌:0,0.53,2.17,10.9,56.7	肝細胞肥大、肝細胞空胞化	肝病理組織学的変化			
			(発がん性は認められ	 (発がん性は認められ			
			(発がん性は必められる) ない)	ない)			
	0.444年数据宣光联会	0,15,150,1500ppm	'^^ ' '				
	2 世代繁殖試験	P雄: 0,1.13,11.1,112	P雄:11.1	150ppm			
		雌: 0,1.43,14.2,135	雌:14.2	(15mg/kg 体重/日)			
		F ₁ 雄: 0,1.10,11.2,120	F1雄:11.2	(101119,1119 11 = 7 7 7			
		雌: 0,1.27,12.7,133	雌:12.7				
		PAL : 0,1.21,12.1,100					
			 親:体重増加抑制、肝腫大、	親:肝重量増加等			
			肝重量増加等	児: 体重増加抑制等			
			児:体重増加抑制、生存率	(繁殖能に対する影響			
			低下	は認められない)			
			(繁殖能に対する影響	,			
			は認められない)				
	発生毒性試験	0,1,5,25,50	母動物:5	5			
			胎児:5				
			日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	母動物:体重増加抑制			
			胎児:骨格変異発現頻度増	胎児:骨格変異発現頻度			
			カロ	増加			
			(催奇形性は認められな				
			\v)				
マウス	18ヶ月間発がん	0, 10, 40, 200, 1500ppm	雄:27.4	雄:28.5			
	性試験 3)	雄: 0,1.37,5.44,27.4,208	雌:35.0	雌: 37.5			
		雌: 0,1.71,6.75,35.0,256					
			肝腫大、肝細胞肥大等	雄で弱い肝発がん性 			
			雄でごく弱い肝発がん性				
ウサギ	発生毒性試験	0.1,3.10,20	母動物:10	10			
			胎児:20				
			日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	日本 日			
			胎児:影響なし	胎児:影響なし			

			(催奇形性は認められない)	
イヌ	90 口間亜急性毒性試験	雌雄: 0,5,20,80,320	雌雄:5	雄雌:5
			肝重量増加	肝重量増加等
	1 年間慢性毒性 試験	雌雄: 0,2,20,200	雌雄:2	雄雌:2
			ALP 増加等	ALP 増加等
ADI			NOAEL: 1.64	NOAEL: 1.86
			SF: 100	SF: 100
			ADI : 0.016	ADI: 0.02
ADI 設定	三根拠資料		ラット 2 年間慢性毒性/発	ラット 2 年間慢性毒性/
			がん性併合試験	発がん性併合試験

NOAEL:無毒性量 SF:安全係数

- 1)無毒性量欄には、最小毒性量で認められた主な毒性所見等を記した。
- 2)無毒性量の違いは、検体摂取量の計算方法の違いによる。
- 3)当該試験では、主群の他に中間と殺群が設けられており、それぞれについて検体摂取量が算出されていたため、ここでは投与量として各用量ごとに主群、中間と殺群のうち低い値を示した。

<別紙1:代謝物/分解物及び原体混在物略称>

名称 (略称)	化学名
(E)-(R)体*	(E)·(R)·1·(4·クロロフェニル)·4,4·ジメチル·2·(1H·1,2,4·
	トリアゾール・1・イル)ペント・1・エン・3・オール
Z 体*	(Z)·1·(4·クロロフェニル)·4,4·ジメチル·2·(1 <i>H</i> ·1,2,4·
	トリアゾール・1・イル)ペント・1・エン・3・オール
CH ₂ OH·E	(<i>E</i>)·5·(4·クロロフェニル)·2,2·ジメチル·4·(1 <i>H</i> ·1,2,4·
	トリアゾール・1・イル)ペント・4・エン・1,3・ジオール
COOH-E	(<i>E</i>)·5·(4·クロロフェニル)·3·ヒドロキシ·2,2·ジメチル·4·(1 <i>H</i> ·1,2,4·
	トリアゾール·1·イル)ペント·4·エン酸
Phenyl-OH-E	$(E)\cdot 1\cdot (クロロ・ヒドロキシフェニル)\cdot 4,4・ジメチル\cdot 2\cdot (1H\cdot 1,2,4\cdot$
(4·OH·E)	トリアゾール·1·yl)ペント·1·エン·3·オール
CH ₂ OH·Z	(<i>Z</i>)·5·(4·クロロフェニル)·2,2·ジメチル·4·(1 <i>H</i> ·1,2,4·
	トリアゾール・1・イル)ペント・4・エン・1,3・ジオール
COOH-Z	(<i>Z</i>)·5·(4·クロロフェニル)·3·ヒドロキシ·2,2·ジメチル·4·(1 <i>H</i> ·1,2,4·
	トリアゾール・1・イル)ペント・4・エン酸
Phenyl·OH·Z	(<i>Z</i>)·1·(クロロ·ヒドロキシフェニル)·4,4·ジメチル·2·(1 <i>H</i> ·1,2,4·
(4·OH·Z)	トリアゾール・1・イル)ペント・1・エン・3・オール
7KE*	(<i>E</i>)·1·(4·クロロフェニル)·4,4·ジメチル·2·(1 <i>H</i> ·1,2,4·
	トリアゾール・1・イル)ペント・1・エン・3・オン
7KZ*	(Z)·1·(4·クロロフェニル)·4,4·ジメチル·2·(1 <i>H</i> ·1,2,4·
	トリアゾール・1・イル)ペント・1・エン・3・オン
7SK	1·(4·クロロフェニル)·4,4·ジメチル·2·(1 <i>H</i> ·1,2,4·
	トリアゾール・1・イル)ペンタン・3・オン
7SA	1·(4·クロロフェニル)·4,4·ジメチル·2·(1 <i>H</i> ·1,2,4·
	トリアゾール・1・イル)ペンタン・3・オール
CC 酸	3·(4·クロロフェニル)·2·(1 <i>H</i> ·1,2,4·トリアゾール·1·イル)アクリル酸
トリアゾール	トリアゾール
CYC-4Cl	1·(9·クロロ[1,2,4]トリアゾロ[5,1·a]イソキノリン·5·イル)·2,2·
	ジメチルプロパン・1・オール
DCCYC	2,2·ジメチル·1·[1,2,4]トリアゾロ[5,1·a]イソキノリン·5·
	イルプロパン・1・オール
ClPhCOOH	4.クロロ安息香酸
ClPhCHO-Trz	4·クロロ·2·(4 <i>H</i> ·1,2,4·トリアゾール·3·イル)ベンズアルデヒド
DBCYC-4Cl	(9-クロロ[1,2,4]トリアゾロ[5,1-a]イソキノリン·5·イル)メタノール
	ド西は汨ケ州」、レブなカーフ

^{*:}代謝物及び原体混在物として存在する

<別紙2: 検査値等略称>

略称	名称
Ach	アセチルコリン
ai	有効成分量
ALP	アルカリホスファターゼ
ALT	アラニンアミノトランスフェラーゼ (=グルタミン酸ピルビン酸トランスアミナーゼ (GPT))
BrdU	5・ブロモ・2・デオキシウリジン
CCl_4	四塩化炭素
C_{max}	最高濃度
GSH	グルタチオン
His	ヒスタミン
LC50	50%致死濃度
LD_{50}	50%致死量
PB	フェノバルビタール
PHI	最終使用から収穫までの日数
TA	チオアセタミド
TAR	総処理(投与)放射能
Tmax	血漿中放射能最高濃度到達時間
T _{1/2}	半減期
TRR	総残留放射能

<別紙3:作物残留試験成績>

	活	% 由			残留值(mg/kg)							
作物名 実施年	験圃場	使用量	数(回)	PHI (日)	ウニコナン	л" – n P	ウニコナゾールP 抱合体		1H-1,2,4・		CYC·4Cl体	
]	数		(101)		最高値	平均值	最高値	平均值	最高値	平均值	最高値	平均値
水稲 (玄米) 1987·1988年	2	12∼16 ^G g ai/ha	- 1	55~75	0.005	0.005*						
水稲 (玄米) 1996年	2	1~1.5 ^L mg ai/L 水溶液に籾浸漬	1	175~ 178	<0.01	<0.01	<0.01	<0.01				
水稲 (玄米) 2000年	2	1 ^L mg ai/L水溶液に 種子浸漬+ 12 ^G g ai/ha	2	48~59	<0.005	<0.005						
水稲 (玄米) 2000年	2	0.8~1 ^L mg ai/L 水溶液に種子浸漬+ 12 ^c g ai/ha	2	124~129	<0.005	<0.005						
水稲 (玄米) 1989年	2	12 ^G g ai/ha	1	55~59			<0.005	<0.005	<0.09**	<0.09**		
水稲 (稲わら) 1987·1988年	2	12∼16° g ai/ha	1	55~75	0.02	0.01						
水稲 (稲わら) 1996年	2	1~1.5 ^L mg ai/L 水溶液に籾浸漬	1	175~ 178	<0.01	<0.01	<0.01	<0.01				
、水稲 (稲わら) 2000年	2	1 ^L mg ai/L水溶液に 種子浸漬+ 12 ^C g ai/ha	2	48~59	<0.01	<0.01						
水稲 (稲わら) 2000年	2	0.8~1 ^L mg ai/L 水溶液に種子浸漬+ 12 ^G g ai/ha	2	124~129	<0.01	<0.01						
てんさい (露地) (根部) 1994年	2	1.25 ^L mg ai/冊	1	173~193	<0.01	<0.01	<0.01	<0.01	<0.05	<0.05	<0.01	<0.01
キャベツ (露地)(葉球) 1996年	2	0.0125 ^L mg ai/株	1	65~104	<0.01	<0.01	<0.01	<0.01	<0.05	<0.05	<0.01	<0.01
レタス (露地)(茎葉) 2002年	2	0.1 ^L mg ai/トレイ	1	52~54	<0.01	<0.01						
たまねぎ (露地)(鱗茎) 2003年	2	1.25 ^L mg ai/トレイ	2	151~198	<0.01	<0.01						
いちご (施設)(果実) 2003年	2	0.25 ^L mg ai/株	1	121~146	<0.01	<0.01	<0.01	<0.01	<0.05	<0.05	<0.01	<0.01

- 注)ai:有効成分量、PHI:最終使用から収穫間隔までの日数 L:液剤、G:粒剤
 - **:1圃場 (PHI=59 月) のみのデータ
 - ・全データが検出限界未満の平均値を算出する場合は検出限界値を平均し、<を付した。
 - ・複数の試験機関で、検出限界が異なる場合の最高値は、大きい値を示した (例えば A 機関で 0.006 検出され、B 機関で<0.008 の場合、<0.008 とした)。
 - ・一部に検出限界未満(例えば<0.01)を含むデータの平均値は検出限界値(例えば0.01)を検出したものとして計算し、*を付した。
 - ・ウニコナゾール P の残留値はは親化合物((E)·(S)体)及び異性体((E)·(R)体)の合計を示す。
 - ・ウニコナゾールP抱合体、1H·1,2,4·トリアゾール抱合体、CYC·4Cl体の残留値はウニコナゾールPに換算して記載した。 換算係数は、 ウニコナゾールP/ウニコナゾールP抱合体 - 1.0 ウニコナゾールP/ CYC·4Cl体 - 1.01 ウニコナゾール P/1H·1,2,4·トリアゾール抱合体 - 4.22

<別紙4:後作物残留試験成績>

	試験	2 田 [20] [2] [2] [2]	回	РНІ	残留值(mg/kg)		
作物名 害施缶	圃	使用量	数		ウニコナゾールP		
実施年	囲 使用量 場 数		(回)	(日)	最高値	平均值	
小麦 (露地)(玄麦) 2000年	1		2	395	<0.01	<0.01	
だいず (露地) (乾燥子実) 2000年	1		2	510	<0.01	<0.01	
ばれいしょ (露地)(塊茎) 2000年	1	0.01 ^L mg ai/kg	2	403	<0.01	<0.01	
だいこん (露地)(根部) 2000年	1	水溶液に種子浸漬 + 12 ^G g ai/ha	2	403	<0.01	<0.01	
だいこん (露地)(葉部) 2000年	1		2	403	<0.01	<0.01	
はくさい (露地)(茎葉) 2000年	1		2	221	<0.01	<0.01	
きゅうり (露地)(果実) 2000年	1		2	446	<0.01	<0.01	

- 注)ai:有効成分量、PHI:最終使用から収穫間隔までの日数 L:液剤、G:粒剤
 - ・全データが検出限界未満の平均値を算出する場合は検出限界値を平均し、<を付した。
 - ・ウニコナゾール P の残留値はは親化合物及び異性体((E)-(R)体)の合計を示す。

<参照>

- 食品、添加物等の規格基準(昭和34年厚生省告示第370号)の一部を改正する件(平成17年11月29日付、平成17年厚生労働省告示第499号)
- 2 農薬抄録ウニコナゾール P (植物成長調整剤) : 住友化学株式会社 (2006)
- 3 Ausralia NRA: Evaluation of the new active UNICONAZOLE-P (2000)
- 4 食品健康影響評価について:食品安全委員会第 158 回会合資料 1·1 (URL: http://www.fsc.go.jp/iinkai/i·dai158/dai158kai·siryou1·1.pdf)
- 5 暫定基準を設定した農薬等に係る食品安全基本法第 24 条第 2 項の規定に基づく食品健康影響 評 価 に つ い て : 食 品 安 全 委 員 会 第 158 回 会 合 資 料 1-3 (URL : http://www.fsc.go.jp/iinkai/i·dai158/dai158kai·siryou1·3.pdf)
- 6 食品安全委員会農薬専門調査会確認評価第三部会第 1 回会合(URL: http://www.fsc.go.jp/senmon/nouyaku/kakunin3 dai1/index.html)
- 7 食品安全委員会農薬専門調査会幹事会第 8 回会合 (URL: http://www.fsc.go.jp/osirase/nouyaku_annai_kanjikai_8.html)
- 8 食品健康影響評価について:食品安全委員会第 181 回会合資料 1-1 (URL: http://www.fsc.go.jp/iinkai/i·dai181/dai181kai·siryou1·1.pdf)
- 9 食品安全委員会農薬専門調査会幹事会第 13 回会合 (URL: http://www.fsc.go.jp/osirase/nouyaku annai kanjikai 13.html)