平成17年度厚生労働科学研究費補助金 食品の安心・安全確保推進研究事業

食品用器具·容器包装及び 乳幼児用玩具の 安全性確保に関する研究

総括•分担研究報告書

平成18(2006)年4月

主任研究者 河村 葉子 国立医薬品食品衛生研究所

分担研究者 六鹿 元雄 国立医薬品食品衛生研究所

分担研究者 小川 正 (財)日本文化用品安全試験所

分担研究者 松崎 克彦 日本製缶協会

分担研究者 高谷 幸 (社)日本乳業協会

分担研究者 伊藤 弘一 東京都健康安全研究センター

分担研究者 高野 忠夫 (財)化学技術戦略推進機構

厚生労働科学研究費補助金(食品の安全・安心確保推進研究事業) 分担研究報告書

ガラス、陶磁器及びホウロウ引き製品の規格基準に関する研究

主任研究者 河村 葉子 国立医薬品食品衛生研究所 分担研究者 六鹿 元雄 国立医薬品食品衛生研究所

研究要旨

食品衛生法の陶磁器、ガラス、ホウロウ引きの器具又は容器包装の材質別規格はカドミウム及び鉛の溶出制限からなる。これらの規格は国際標準化機構(ISO)の当時の規格をもとに1986年に制定されたものである。しかし、これらの器具・容器包装にかかわるISO規格は近年相次いで改正されたり新規に設定され、ISO 4531(1998) ホウロウ、ISO 6486(1999) 陶磁器製品、ガラスセラミック製品及びガラス製食器、及びISO 7086(200 0) ガラス製中空容器となっている。昨年度はこれらのISO規格について全文を翻訳するとともにその内容の検討を行ったが、今年度は、現行の規格基準をISO規格と整合化させる場合の問題点等について検討を行い、改正素案を作成した。

現行の食品衛生法では、ガラス、陶磁器及びホウロウ引き製器具及び容器包装の規格基準は3種類の材質で共通の規格基準となっているが、新しいISO規格では材質毎に溶出限度値が異なる。これらの溶出限度値は安全性に配慮して、材質毎に特性をふまえて出来る限り低い限度値が設定されており、現行法よりもかなり厳しいものである。そこで、溶出限度値及び試料の区分については国際標準であるISO規格に整合化することが適当と判断した。ただし、陶磁器のカップ・マグの規格はそれらの定義が不十分であること、ホウロウ引きの飲み口の規格は食品と接触していない面の規格であることなどから、導入は適当ではないと考えられた。また、試験法については、ISO規格の試験法と現行法は基本的には同じであり現行法を大きく変更する必要はない。また、ISO規格で定める試料採取数、試験方法の詳細、判定法、バリデーション、試験報告書の記載法などについては、食品衛生法の他の規格基準との整合性などから、明記する必要はないと判断された。さらに我が国の伝統的な工芸品である鉛含有の釉薬や絵具を用いる陶磁器について、その伝統を尊重しながら消費者の安全性を確保するための方策を検討した。

これらをもとに、ガラス製、陶磁器製又はホウロウ引きの器具又は容器包装の材質別規格の改正素案を作成した。この改正素案は、ガラス、陶磁器、ホウロウ引きのいずれの材質においても、現行法よりも厳しいカドミウムおよび鉛の溶出限度値となっており、これらの器具及び容器包装の安全性向上に資するものと考える。

研究協力者

小川晋永、鈴木蕃、加藤隆也

社)日本硝子製品工業会

山田守之 日本硝子食器工業会

荻野剛弘 日本陶業連盟

松島安男 日本陶磁器工業協同組合連合会

安井享二 日本陶磁器産業振興協会

佐藤軍司 日本陶磁器卸商業協同組合連合

会

平井敏夫 岐阜県セラミックス技術研究所

近藤展眞 多治見市陶磁器意匠研究所

大野登美藏 社)日本琺瑯工業会

A. 研究目的

食品衛生法の「ガラス製、陶磁器製又はホ ウロウ引きの器具又は容器包装」の材質別規 格は1986年に制定された。この規格は当時の 国際標準化機構(ISO)の規格に準拠して制定 された。しかし、ガラス、陶磁器及びホウロ ウ引きにかかわるISO規格が1998~2000年に 相次いで改正されまたは新規に設定され、IS O 4531(1998) ホウロウ、ISO 6486(1999) 陶 磁器製品、ガラスセラミック製品及びガラス 製食器、及びISO 7086(2000) ガラス製中空 容器となった。そこで、昨年度はこれらのIS 0規格について全文を翻訳するとともにその 内容の検討を行った。今年度は、現行の規格 基準をISO規格と整合化させる場合の問題点 等について検討を行い、これらをもとに、ガ ラス、陶磁器及びホウロウ引き製器具若しく は容器包装又はこれらの原材料の規格基準の 改正素案を作成することとした。

B. 研究方法

現行の食品衛生法のガラス製、陶磁器製またはホウロウ引きの器具若しくは容器包装又はこれらの原材料の材質別規格と、ISO 4531

ホウロウ引き製品からの鉛及びカドミウムの溶出、ISO 6486 陶磁器製品及びガラス製食器からの鉛及びカドミウムの溶出、ISO 7086ガラス製中空食器からの鉛及びカドミウムの溶出の3種類のISO規格について内容を比較検討し、整合化する場合の留意点、問題点等を明らかにするとともに、現行法の改正素案を作成した。

C. 研究結果及び考察

- 1. 現行法とISO規格の整合化とその問題点
- 1) 現行法とISO規格の整合化

① ISO規格

現行の「ガラス製、陶磁器製またはホウロウ引きの器具又は容器包装」の材質別規格は、「食品、添加物等の規格基準(昭和37年厚生省告示370号)」の「第3 器具及び容器包装 D 器具若しくは容器包装又はこれらの原材料の材質別規格」に収載されている。この規格は当時のISO規格に準拠して制定されたものであることから、改正されたISO規格について検討を行い、必要な事項を反映させていく必要がある。

しかも、1994年には技術的貿易障壁に関する協定(Agreement on Technical Barriers to Trade: TBT協定)が調印され、1995年には世界貿易機関(WTO)が設立され、WTOによりISO規格は国際規格として認定されている。WTOは加盟国に対して、国家規格を策定する際にはISOのような国際規格を基礎として用いるように要求している。そのため、もしISOと異なる規格を制定する場合には、十分な科学的根拠を必要とする。

また、ISO 6486及びISO 7086の序文の中で これらの規格の目的を以下のように述べてい る。「食品の調理、配膳及び貯蔵用に使用さ れる当該製品が、不適切な配合、加工により 製造された場合に、その使用によって引き起こされる可能性のある危険から人々を確実に 守る効果的な方法が必要である。」また、

「当該製品から溶出する有害物質に対する各 国の異なった規制は非関税障壁になる。その ためカドミウム及び鉛の溶出に関する国際的 に承認された試験法を策定し、有害な重金属 溶出の許容量を定義する必要がある。」これ らはいずれも我が国の規格基準を考える上で も極めて重要なポイントである。

② ISO規格値と安全性

WHOによる暫定耐容一週間摂取量(PTWI)は、カドミウムが0.007 mg/kg bw (体重50 kgの場合には1日あたり0.05 mg)、鉛が0.025 mg/kg bw (同 0.18 mg) とかなり低い。しかも、カドミウム及び鉛は環境中に広く存在し、食品、飲料水、空気など様々な媒体を介して暴露されている。そのため、WHOやCodex (国際食品規格)において、食品由来のカドミウム及び鉛の低減化が大きな課題となっており、器具・容器包装についても極力低くすることが求められている。

ISO 4531(1998) ホウロウ、ISO 6486(1999) 陶磁器製品、ガラスセラミック製品及びガラス製食器、及びISO 7086(2000) ガラス製中空容器で定めるカドミウム及び鉛の溶出限度値は、従前のISO規格よりも大幅に引き下げられている。しかし、それぞれの数値の設定根拠は示されておらず、問い合わせても明確にはならなかった。ただし、この点に関連してISO 6486及びISO 7086の緒言に下記のように記されている。

「当該規格の中で規定されている鉛及びカドミウム溶出の許容限度値は、金属の摂取量の安全性の目安として設定することを意図したものではなく、関係業界における優良製造規範に対応し、世界の主要市場における規制

に適合させたものであり、かつ、これらの金 属の暴露量を全般的に減らそうとする目的を 考慮したものである。」すなわち、これらの 規格値は安全性に十分配慮しながら、材質毎 に現在の製造方法でできる限り低く抑えるよ うに設定した値であるという。

3種類のISO規格の中で定めるカドミウム 及び鉛の溶出限度値は、材質、形状、用途な どに応じて異なる数値が設定されている。そ れらのうち最も緩いとみなされるカドミウム 0.5 mg/L、鉛2 mg/Lという溶出限度値の器具 の場合、それに接触する食品を100 g摂取す ると、カドミウム及び鉛の摂取量は0.05 mg 及び0.2 mgとなりPTWIと同程度になる。ただ し、これは4%酢酸で22℃24時間の溶出試験 を行った場合の溶出量であり、器具・容器包 装にとっては、極めて過酷な条件における最 悪の状況設定といえる。実際の生活でこれら の器具・容器包装を用いる条件ははるかに穏 やかであり、食品への溶出が生じたとしても、 摂取されるカドミウム及び鉛ははるかに少な くなる。

③ 現行法へのISO規格の導入

新しいISO規格が定めるカドミウムと鉛の 溶出限度値は、従前のISO規格や現行の食品 衛生法の規格値と比較して大幅に低減されて おり、より安全性を指向した規格である。ま た、これらの規格設定の目的がガラス、陶磁 器及びホウロウ引き製品の安全性確保ととも に、国際的に統一された規格設定を目指すも のであるということから、我が国の現行の規 格基準の見直しにあたっては、ISO規格を基 にして検討することが適当と判断された。

ただし、これらのISO規格をそのまま現行法に導入するならば、様々な問題が派生する可能性がある。そこで、考えられる問題点を摘出し、対応を検討することとした。

2) 試料の区分

① 材質による区分

現行の食品衛生法の「ガラス製、陶磁器製またはホウロウ引きの器具又は容器包装」の材質別規格を表1にまとめた。規格値は試料の形状により3つに分類されているが、ガラス、陶磁器及びホウロウ引きという3種類の材質による区別はなく、共通の規格となっている。

一方、ISO規格では、ホウロウはISO 4531 (1998)、陶磁器製品、ガラスセラミック製品及びガラス製食器はISO 6486 (1999)、ガラス製中空容器はISO 7086 (2000) という3つの異なる規格に分かれて設定されている。それぞれの規格の概要を表2~4に示す。それぞれの規格毎に製品の区分方法も溶出限度値も大きく異なる。

そのため、これらの内容を摺り合わせて、 現行の食品衛生法の規格基準と同様の3種類 の材質に共通の規格とすることは不可能であ る。また、溶出限度値に変更を加えるならば ISO規格との整合化とはいえなくなる。そこ で、規格値とその分類は原則としてISO規格 のまま採り入れることとした。

ただし、ガラス製品については、浅型食器や調理器具についてはISO 6486、中空容器はISO 7086で別に規定されている。しかし、ガラス製器具・容器包装として、両者を一括し、その中で分類して記載する方がわかりやすいと考えられる。そこで、食品衛生法では、ガラス、陶磁器、ホウロウ引きの材質別に規格を記載することとした。

② 試料の形状による区分

食品衛生法、ISO規格ともに、試料の形状により分類を行い、それぞれに対応する規格を設定している(表 $1\sim4$)。

一つは浸出用液を満たすことができる試料

とできない試料の区分である。両者は試験方 法が異なり、そのため得られた測定値の持つ 意味が異なる。すなわち、浸出用液を満たす ことができる試料では、試料に4%酢酸を満 たして試験を行い、その液体中のカドミウム 及び鉛の濃度を溶出量とし、それに対する限 度値を設定している。一方、浸出用液を満た すことができない試料、たとえば平皿のよう に深さがほとんどないものやレンゲのように 食品との接触面が両面に及ぶものなどでは、 試料を4%酢酸に浸漬させたり、シリコーン で縁を盛り上げて溶液を満たして試験を行う。 この場合には溶液量は試験方法によって変わ ってくるものであり、溶液中の濃度には意味 がない。そこでこのような試料については表 面積あたりの溶出量を求めて、これに対する 限度値を設定している。浸出用液を満たすこ とができない試料としては、現行法、ISO法 ともに深さ2.5 cm未満としており、現行のま まで変更の必要はない。

もう一つの区分は、浸出用液を満たすことができる深型試料の大きさである。同じ材質で作られた試料であっても、高さや半径が大きいほど、すなわち容量が大きいほど、溶出量は変わらなくても、溶液中の濃度としては小さくなる。容量が大きい場合には、内容物の摂取量が多くなる可能性があり、また容量が大きいものは保存容器など食品との接触時間が長い場合も多い。そこで、容量の大きい試料の方が溶出限度値は低く設定されている。

表1に示すように現行法は1.1 Lで区分している。一方、ISO 4531 ホウロウ引きでは3 Lで深型とタンク・容器の2つに区分している(表2)。また、ISO 6486 陶磁器及びガラス食器では、深型容器は現行法と同様に1.1 Lで区分しているが、そのほかに容量が3 L以上のものを貯蔵容器と定義して区分して

表1. 食品衛生法におけるガラス、陶磁器又はホウロウ引き製器具又は容器包装の規格

区	分	鉛	カドミウム
深さ 2.5 cm 以上	容量 1.1 L 未満	5μg/ml 以下	0.5μg/ml以下
	容量 1.1 L 以上	2.5μg/m1以下	0.25μg/m1以下
深さ2.5 cm未満または	液体を満たせないもの	17μg/cm²以下	1.7μg/cm²以下

表 2. ISO 4531におけるホウロウ引き製品の鉛及びカドミウム溶出限度値

		(H	
製品区分	鉛	カドミウム	
非調理 浅型 2.5 cm未満	$0.8 \text{ mg/dm}^2 (8 \mu \text{ g/cm}^2)$	0.07 mg/dm ² (0.7 μ g/cm ²)	
深型 2.5 cm以上 3 L以下	0.8 mg/L $(0.8 ppm)$	0.07 mg/L (0.07 ppm)	
調理 浅型 2.5 cm未満	$0.1~{\rm mg/dm^2}~(1\mu~{\rm g/cm^2})$	0.05 mg/dm ² (0.5 μ g/cm ²)	
深型 2.5 cm以上 3 L以下	0.4 mg/L (0.4 ppm)	0.07 mg/L (0.07 ppm)	
タンク及び容器 3 L以上	$0.1~{\rm mg/dm^2} \cdot (1~\mu~{\rm g/cm^2})$	0.05 mg/dm ² (0.5 μ g/cm ²)	
飲み口 (外表面上端から2 cm)	2.0 mg/製品	0.20 mg/製品	

^()は単位を食品衛生法に合わせて換算したもの

表 3. ISO 6486における陶磁器製品、ガラスセラミック製品及びガラス製食器の 鉛及びカドミウム溶出限度値

製品区分	判定法	鉛.		カドミウム
浅型容器 2.5 cm未満	4検体の平均	0.8 mg/dm	2 (8 μ g/cm 2)	$0.07 \text{mg/dm}^2 (0.7 \mu\text{g/cm}^2)$
深型容器 1.1 L 未満	4検体全て	2 mg/L	(2 ppm)	0.5 mg/L (0.5 ppm)
1.1 L 以上	4検体全て	1 mg/L	(1 ppm)	0.25 mg/L (0.25 ppm)
貯蔵容器 3 L 以上	4検体全て	0.5 mg/L	(0.5 ppm)	0.25 mg/L (0.25 ppm)
カップ・マグ	4検体全て	0.5 mg/L	(0.5 ppm)	0.25 mg/L (0.25 ppm)
調理器具	4検体全て	0.5 mg/L	(0.5 ppm)	0.05 mg/L (0.05 ppm)

^()は単位を食品衛生法に合わせて換算したもの

表 4. ISO 7086におけるガラス製中空容器の鉛及びカドミウム溶出限度値

# オ	製品区分	判定法	鉛		カドミ	ウム
容器	600 ml 未満	4検体全て	1.5 mg/L	(1.5 ppm)	0.5 mg/L	(0.5 ppm)
	~ 3 L 未満	4検体全て	0.75 mg/L	(0.75 ppm)	0.25 mg/L	(0.25 ppm)
	3 L 以上	4検体全て	0.5 mg/L	(0.5 ppm)	0.25 mg/L	(0.25 ppm)

^()は単位を食品衛生法に合わせて換算したもの

分している(表3)。また、ISO 7086 ガラス製中空容器では600 mlと3 Lで3段階に区分されている(表4)。これらの区分の根拠については記載されておらず情報も入手できなかったが、ガラス、陶磁器及びホウロウ引き製品のそれぞれの用途と形状から決定されたものと推測される。

これらの分類は規格値の設定と切り離せない要素であり、ISOの各規格の分類を尊重することが適当と判断された。

③ 調理器具

現行の食品衛生法では、試料の区分は形状のみで行われてきた。しかし、ISO 4531とIS 0 6486では用途による区分も行われている。その一つが調理器具である。

ISO 4531 ホウロウ引きでは浅型、深型とも調理器具と非調理器具に分類している。ここでいう調理器具とは食品及び飲料の調理の際に加熱される食品用器具(例:キャセロール、パン焼き器、ロースター、コーヒーメーカー、シチュー鍋)と定義されている。

一方、ISO 6486 陶磁器及びガラス食器では、形状には関わらず調理器具として1つに分類している。この調理器具については飲食器であり、特に飲食物の調理の過程で一般の加熱方法や電子レンジで加熱されることを用途とすると定義されている。

調理器具、なかでも加熱して使用される器 具は、一般の食器よりも高温で使用される。 そのため、カドミウム及び鉛が溶出しやすく なる可能性があり、より厳しい規格を設定す ることは極めて有意義である。

なお、我が国の規格に導入する場合には、 対象が調理全般ではなく加熱されるものであることを明確にするため「加熱用器具」とするのが適当と思われる。なお、加熱用器具とは、加熱して使用することを意図して製造さ れたもの (なべ、やかんなど)、または加熱 調理用、直火用、オーブン用、電子レンジ用 などと加熱して使用することが明示されたも のを対象とする。

④ カップ・マグ

ISO 6486 陶磁器及びガラス食器にはカップ・マグという分類がある。同じ大きさの一般の試料と試験法は同じであるが、より厳しい溶出限度値が設定されている。

カップ・マグについては、その定義において「カップ・マグ:小さな陶磁器製深型容器で、通常飲み物に使用されるもの。例えば温かいコーヒーや紅茶を飲む場合に用いられるもの」となっており、その下に「注:カップ及びマグは取っ手付きの約240 mL程度の器である。一般的に側面が湾曲しているものをカップ、側面が円筒状であるものをマグという」と記載されている。

温かい飲み物用ということであれば、我が 国では湯飲みもあるが、取っ手はない。また、 茶碗は本来ご飯を食べるためのものであるが、 茶を入れて飲むことも多い。飲み物用ではな いが麺類のどんぶりも口を付ける。このよう に、洋食器では口を付けるものはほぼカップ ・マグに限られるが、我が国の食器の中には、 口を付けて使用するものがかなりある。

この規格を設定した意図が「温かいものを入れて口を付けて飲む食器」にあるのか、24 0 mLという量も含めて規制対象としたのか、情報収集を行ったが確認できなかった。「カップ・マグ」を「温かいものを入れて口を付けて飲む食器」として日本独自に定義を拡大する場合には、どこまでを範囲にするか明確な線を引くことは極めて難しい。一方で、IS 0規格の定義と注に示されたとおり「温かい飲み物を飲むための取っ手のある240 mL程度の食器」に限ったとしても、「240 mL程度」

の解釈には混乱が生じることが予想される。 しかも、我が国ではこれらの一部のカップ・ マグだけに特別な規格を設定する意義が明確 ではない。そこで、現状では我が国の規格基 準に「カップ・マグ」の分類を導入すること は適当ではないと判断した。

⑤ 飲み口

ISO 4531 ホウロウ引きでは飲み口という 区分がある。飲み口として規制の対象として いるのは、飲み口の最上端から20 mm幅の外 表面部分であり、試料の飲み口を下にして浸出用液に浸して試験を行う。口を付けたとき に外表面部分からカドミウム及び鉛が溶出するのを規制するのが目的と推測される。

しかし、現行の食品衛生法で器具の範囲は 食品又は添加物に直接接触するとされており、 外表面部分について規制している例がない。

しかもこの飲み口の溶出限度値は、製品あたりカドミウムで0.20 mg、鉛で2.0 mgとなっている。ホウロウ引き製品で口をつける食器としてはマグカップが一般的であるが、高さ7 cm、内容量260 mlの試料の場合、内表面からの治量では多量の10倍量が飲み口部分から溶出した場合にのみ違反となる。これを表面積あたりの溶出量に換算すると35倍に相当を治した場合にあたりを使用したホウロウ引き製品は我が国の市場では考えがたく、食品衛生法の特例として外表面に規格を設定するとは思われない。

3) 試験法

① 試験溶液の調製法

現行の「ガラス製、陶磁器製またはホウロウ引きの器具又は容器包装」の材質別規格では、4%酢酸を浸出用液として、常温で暗所

に24時間放置する。得られた溶出液を蒸発乾固して、塩酸(1→2)に溶解して再度乾固し、 0.1 mol/1硝酸に溶かして試験溶液とする。

この試験溶液の調製法は今年度末に告示改 正が予定されており、改正後は得られた溶出 液を、乾固や塩酸溶解を行うことなく、その まま試験溶液とする。

一方、ISOの3種類の規格では、試験溶液の調製法は同じである。すなわち、4%酢酸を浸出用液として22±2℃で24時間放置し、得られた溶出液を試験溶液とする。カドミウムの試験を行う時は暗所で試験する。

現行法の改正案とISO規格はほぼ同じ試験 法であり、次に述べる試験温度に若干の相違 が見られるだけである。

② 試験温度

食品衛生法では試験温度は常温となっているが、これは $15\sim25$ でを指す。ISO規格の 22 ± 2 $(20\sim24$) と比べるとやや範囲が広い。

溶出試験では試験温度が高いほど溶出量は多くなるが、15℃と20℃における溶出量の差は極めて小さい。一方、ガラス、陶磁器及びホウロウ引き器具は大きいものもあり、それらに4%酢酸を満たして試験を行うためにはかなり広いスペースが必要となる。しかし、22±2℃に設定できる恒温室や大型の恒温器は登録検査機関の設置要件に含まれておらず、検査機関がこの条件を満たせるとは限らない。常温の15~25℃であれば、一般の空調設備がある試験室で十分に対応できる。以上を勘案すると、現行法と同様に試験温度は常温(15~25℃)とするのが望ましい。

③ カドミウム及び鉛の測定機器

カドミウム及び鉛の測定機器として、食品 衛生法の現行法ではフレーム方式の原子吸光 光度計を採用しているが、今年度末に予定さ れている規格基準改正により、誘導結合プラ ズマ発光強度計(ICP)も使用可能となる。

一方、ISO規格ではフレーム方式の原子吸 光光度計を用いることとなっているが、さら に日常の試験では本試験法と同等な他の分析 法を使用してもよいと記載されている。

フレームレス方式の原子吸光光度計や誘導 結合プラズマ発光強度計はフレーム方式の原 子吸光光度計と同等の分析法とみなせること から、改正案を踏襲することが適当である。

④ 試料数と判定法

ISO規格ではいずれも試料として4製品を用いるように指定している。しかし、適合の判定方法はそれぞれ異なる。ISO 4531 ホウロウは4個の平均値が限度を超えず、しかも限度を超過したものがあっても超過が50%未満であれば適合とする。また、ISO 6486 陶磁器製品等の浅型試料は4個の平均値が限度値を超過しなければ適合である。一方、ISO 6486のその他の試料とISO 7086 ガラス製中空容器は4個すべてが溶出限度値以下の場合のみ適合となる。

このようにISO規格では試料数はいずれも 4個であるものの、試料数に対する判定法は 大きく異なっており、しかもその根拠は示されていない。

一方、我が国の器具・容器包装の規格基準では、ガラス、陶磁器、ホウロウ引き製品だけでなく、いずれの材質の製品についても試料で試験を行い、これが規格に適合しなければ不適となる。この方式はISO規格の判定法と比べて、4個すべて限度値以下よりは若干緩くなる可能性があるが、4個の平均値で判定するよりは厳しい。一方で、試料数が増加すると、試料の費用だけでなく、試験費用も大きく寄与するとはいえない。

以上のことから、試料数については特に4個と限定しないことが望まれる。

⑤ 測定値の単位・

溶出量及びその限度値の表記において、現行法では標準溶液との比較で判定し数値では明示してこなかったが、改正案では液体を満たせないものは μ g/cm²、満たせるものは μ g/mlで表記される。一方、ISO法では前者はmg/dm²、後者はmg/Lである。後者は単位が異なっても数値は同じであるが、前者は見かけ上ISO規格の方が一桁小さくなる。これらは単に表記上の相違であるので、食品衛生法では他の規格基準と同一の μ g/cm²及び μ g/mlで表記する。

⑥ その他

ISO規格には、その他に試験方法の詳細、バリデーション法、試験報告書の記載法などについても記載されている。しかし、食品衛生法の器具及び容器包装の規格基準では、このような内容については規格に盛り込んでいない。そこで、現行法における整合性の観点から、これらを記載する必要はないと結論された。

4) 伝統的な技法による陶磁器

我が国では、各地で長い歴史を持つ伝統的な陶磁器が製造されている。これらの陶磁器は、伝統的な製法による独特の色調等をもつ工芸品として受け継がれ、また食器としても使用されてきた。

これらの陶磁器の中には、伝統的な技法として、鉛を含有する釉薬や色絵具を用いて独特の色調を出しているものがある。そのため、これらの陶磁器について溶出試験を実施すると、一部の製品では、現行の食品衛生法の規格には合致するものの、ISOの溶出限度値を超える鉛が溶出する可能性がある。

我が国の食品衛生法をISO規格に整合させて改正し、鉛の溶出限度値を引き下げると、一部の伝統的な釉薬や絵具を用いる陶磁器については、茶碗や皿などのいわゆる食器の形状を持つ製品を生産することができなくなる可能性がある。そこで、伝統的な技法を守りながら、消費者の安全も十分に担保できる方策について検討した。

伝統的な技術や技法を用いて生産される工芸品については、「伝統的工芸品産業の振興に関する法律」に基づいて経済産業大臣が「伝統的工芸品」として指定するという制度がある。また、伝統的工芸品として指定された技術や技法を用いて生産されているもので、一定の基準に合格したものに対しては、伝統的工芸品であることを個々の製品毎に表示することができる。

そこで、伝統的工芸品である陶磁器のうち、 伝統証紙を貼付しているものまたは通常の食 器ではないものについては、消費者の安全に 十分に配慮した、たとえば下記のような注意 書きを添付することが必要であると考えられ る。

「注意:本品は鉛を含有する伝統的な釉薬 (または色絵具など)を使用しています。そ のため、酸性になると鉛が溶出する可能性が ありますので、酢の物などの酸性食品には使 用しないでください。」

なお、ここでいう「通常の食器ではないもの」とは、飾り台や飾り紐が付いた観賞用絵皿、茶道の道具である抹茶茶碗などである。

これはあくまでも伝統的工芸品の伝統的な技法を伝承するための特別な措置である。そのため、製造者は質の悪い釉薬や絵具を用いたり、焼成温度が不適切なことにより、鉛の溶出量が増加することがないように十分に注意を払うことが肝要である。

2. ガラス製、陶磁器製及びホウロウ引きの 器具・容器包装の材質別規格改正素案

食品衛生法の「食品、添加物等の規格基準 (昭和37年厚生省告示370号)」の「第3器 具及び容器包装D器具若しくは容器包装又 はこれらの原材料の材質別規格」における 「1 ガラス製、陶磁器製及びホウロウ引き の器具又は容器包装」について、これまでの 検討を踏まえて改正素案を作成し、以下に示 した。また、表5に素案における試料の分類 と規格値をまとめた。本改正素案は現行のIS 0規格との整合化を基本としたものであるが、 現行法との整合性や我が国の現状にも配慮し て作成したものである。

【改正素案】

食品、添加物等の規格基準(昭和37年厚生 省告示370号)

第3 器具及び容器包装

D 器具若しくは容器包装又はこれらの原 材料の材質別規格

1 ガラス製,陶磁器製又はホウロウ引きの器具又は容器包装

ガラス製,陶磁器製又はホウロウ引きの器具 又は容器包装は,次の試験法による試験に適 合しなければならない。

(1)試験溶液の調製

1. 液体を満たすことのできない試料,液体を満たしたときにその深さが2.5cm未満である試料及びホウロウ引きで容量3 L以上の試料

試料を水でよく洗つた後,4%酢酸を浸出用液として浸漬し,常温で暗所に24時間放置する。この液を採り,試験溶液とする。なお,ホウロウ引きの器具又は容器包装であって容量3 L以上の場合は試験片を作成して試料とする。

2. 液体を満たしたときにその深さが2.5cm以上である試料

試料を水でよく洗つた後,4%酢酸を満たして,常温で暗所に24時間放置する。この液を採り,試験溶液とする。

(2) 試験

- 1. カドミウム及び鉛
- a 検量線の作成

カドミウム標準溶液及び鉛標準溶液の一定量に4%酢酸を加え,対象試料のカドミウム及び鉛限度値と同じ濃度,並びにその0.5及び1.5倍の濃度をもつ溶液を調製する。これらについて試験溶液と同様の方法により測定を行い,カドミウム及び鉛それぞれの検量線を作成する。

b 定量法

試験溶液について、原子吸光光度法又は誘導結合プラズマ発光強度測定法により、カドミウム及び鉛の濃度 $C(\mu g/m1)$ を求める。そのうち、液体を満たすことのできない試料、液体を満たしたときにその深さが2.5cm未満である試料又はホウロウ引きで容量3 L以上の試料については、試料の表面積を $S(cm^2)$ 、浸出用液の全量をV(m1)とし、次式によりそれぞれの単位面積あたりの溶出量を求める。

単位面積当たりの溶出量(μ g/cm²)=(C×V)/S

① ガラス製の器具又は容器包装

液体を満たすことのできない試料又は液体を満たしたときにその深さが2.5cm未満である試料の場合,単位面積あたりの溶出量はカドミウムにあっては0.7 μ g/cm²以下,鉛にあっては8 μ g/cm²以下でなければならない。また,液体を満たしたときその深さが2.5cm以上の試料の場合,試験溶液中の濃度は容量600 m1未満の試料の場合,カドミウムにあっては0.5 μ g/m1以下,鉛にあっては1.5 μ g/m1以下,容量600 m1以上3 L未満の試料の場合,カドミウムにあっては0.25 μ

g/m1以下,鉛にあっては $0.75 \mu g/m1$ 以下,容量 3 L 以上の試料の場合,カドミウムにあっては $0.25 \mu g/m1$ 以下,鉛にあっては $0.5 \mu g/m1$ 以下でなければならない。ただし,加熱用器具においては $0.5 \mu g/m1$ 以下,鉛にあっては $0.05 \mu g/m1$ 以下,鉛にあっては $0.5 \mu g/m1$ 以下でなければならない。

② 陶磁器製の器具又は容器包装

液体を満たすことのできない試料又は液体を 満たしたときにその深さが2.5cm未満である試料 の場合,単位面積あたりの溶出量はカドミウムに あっては $0.7 \mu g/cm^2$ 以下, 鉛にあっては $8 \mu g/c$ m²以下でなければならない。また,液体を満たし たときその深さが2.5cm以上の試料の場合, 試 験溶液中の濃度は容量1.1 L 未満ではカドミウ ムにあっては $0.5 \mu g/m1$ 以下, 鉛にあっては 2μ g/ml以下, 容量1.1 L 以上3 L未満ではカドミ ウムにあっては0.25 μg/ml以下,鉛にあっては1 μg/ml以下, 容量3 L 以上ではカドミウムにあ っては0.25 μg/ml以下, 鉛にあっては0.5 μg/m 1以下でなければならない。ただし、加熱用器具 においては、カドミウムにあっては $0.05 \mu \text{ g/ml}$ 以下,鉛にあっては0.5 µg/m1以下でなければ ならない。

③ ホウロウ引きの器具又は容器包装

液体を満たすことのできない試料又は液体を満たしたときにその深さが2.5cm未満である試料の場合,単位面積あたりの溶出量はカドミウムにあっては 0.7μ g/cm²以下,鉛にあっては 8μ g/cm²以下でなければならない。また,液体を満たしたときその深さが2.5cm以上で容量3 L 未満の試料の場合,試験溶液中の濃度はカドミウムにあっては 0.07μ g/ml以下,鉛にあっては 0.8μ g/ml以下,容量3 L以上の試料の場合,単位面積あたりの溶出量はカドミウムにあっては 0.5μ g/cm²以下,鉛にあっては 0.5μ g/cm²以下,金にあっては 0.5μ g/cm²以下,金にあっては 0.5μ g/cm²以下,金にあっては 0.5μ g/cm²以下でなければならない。ただし,加熱用器具においては,液

体を満たすことのできない試料又は液体を満たしたときにその深さが2.5 cm未満である試料の場合,単位面積あたりの溶出量はカドミウムにあっては $0.5 \mu g/cm^2$ 以下,鉛にあっては $1 \mu g/cm^2$ 以下,液体を満たしたときその深さが2.5 cm以上で容量3 L 未満の試料の場合,試験溶液中の濃度はカドミウムにあっては $0.07 \mu g/m$ 1以下,鉛にあっては $0.4 \mu g/m$ 1以下でなければならない。

【標準溶液】

カドミウム標準原液 金属カドミウム100mgを量り,10%硝酸50m1に溶かして水浴上で

蒸発乾固し、残留物に0.1mol/1硝酸を加えて100mlとする。本液1mlはカドミウム1mgを含む。

カドミウム標準溶液 カドミウム標準原液 1m1を採り、4%酢酸を加えて200m1とする。 本液1m1はカドミウム 5μ gを含む。

鉛標準原液 硝酸鉛 (Ⅱ) 159.8mgを10% 硝酸10mlに溶かし、水を加えて100mlとする。 本液1mlは鉛1mgを含む。

鉛標準溶液 鉛標準原液1mlを採り、4%酢酸を加えて200mlとする。本液1mlは鉛 5μ gを含む。

表 5. ガラス、陶磁器又はホウロウ引き製器具又は容器包装の規格改正素案のまとめ

材質	製品	品区分	カドミウム	鉛
ガラス	深さ2.5 cm未満る	または液体を満たせないもの	0.7 $\mu g/cm^2$	$8 \mu \text{ g/cm}^2$
	深さ2.5 cm以上	容量 600 ml 未満	$0.5 \mu \text{ g/ml}$	1.5 μ g/ml
		容量 3 L 未満	$0.25~\mu\mathrm{g/ml}$	$0.75~\mu\mathrm{g/ml}$
		容量 3 L 以上	0.25 $\mu \text{g/m}$ 1	$0.5 \mu \text{ g/ml}$
	加熱用器具		$0.05~\mu\mathrm{g/ml}$	$0.5 \mu \text{ g/ml}$
陶磁器	深さ2.5 cm未満さ	または液体を満たせないもの	0.7 $\mu \text{ g/cm}^2$	8 $\mu \text{g/cm}^2$
	深さ2.5 cm以上	容量 1.1 L 未満	$0.5 \mu \text{ g/ml}$	$2 \mu \text{ g/ml}$
		容量 1.1 L 以上 3 L 未満	$0.25~\mu\mathrm{g/ml}$	$1 \mu \text{ g/ml}$
		容量 3 L 以上	$0.25~\mu\mathrm{g/ml}$	$0.5 \mu \text{ g/ml}$
	加熱用器具		0.05 μ g/ml	$0.5 \mu \text{ g/ml}$
ホウロ	深さ2.5 cm未満る	または液体を満たせないもの	$0.7 \mu \text{ g/cm}^2$	8 μg/cm²
ウ引き	深さ2.5 cm以上	容量 3 L 未満	$0.07~\mu\mathrm{g/ml}$	$0.8 \mu \text{ g/ml}$
		容量 3 L 以上	$0.5 \mu \text{ g/cm}^2$	$1 \mu g/cm^2$
	加熱用器具	深さ2.5 cm未満	$0.5 \mu \text{ g/cm}^2$	$1 \mu g/cm^2$
		深さ2.5 cm以上	$0.07~\mu\mathrm{g/ml}$	$0.4 \mu \text{ g/ml}$

D. 結論

ガラス製、陶磁器製及びホウロウ引きの器 具又は容器包装に関わるISO規格は、この数 年で規格が改正されたり新規に制定され、そ の内容が大きく変更された。

我が国の食品衛生法のガラス製、陶磁器製

又はホウロウ引き製器具又は容器包装の材質別規格は、改正前のISO規格をもとに設定されていることから、ISO規格との整合化について検討を行った。

現行法では、ガラス、陶磁器及びホウロウ引き製器具及び容器包装は3種類の材質で共

通の規格基準となっているが、新しいISO規格では材質毎に溶出限度値が異なっている。これらの溶出限度値は安全性に配慮された現行法よりもかなり厳しいものであり、材質値に特性をふまえて出来る限り厳しい限度値及び試料の区分については国際標準であるISO規格に整合化し、従前よりも容量や加熱の有無により組合ことが適当と判断された。ただし、陶磁器のカップ・マグの規格はそれらの定義が不十分であること、ホウウであることがありであることがありますの規格は食品と接触していないあの規格はあることなどから、導入は適当ではないと考えられた。

また、試験法については、ISO規格の試験 法と現行法は基本的には同じであり現行法を 大きく変更する必要はなかった。また、試料 採取数、試験方法の詳細、判定法、バリデー ション、試験報告書の記載法などについては、 食品衛生法の他の規格基準との整合性などか ら、明記する必要はないと結論された。

さらに我が国の伝統的な工芸品である鉛含 有の釉薬や絵具を用いる陶磁器について、そ の伝統を尊重しながら消費者の安全性を確保 するための方策を検討した。

これらをもとに、ガラス製、陶磁器製又は ホウロウ引きの器具又は容器包装の材質別規 格の改正素案を作成した。この改正素案は、 ガラス、陶磁器、ホウロウ引きのいずれの材 質においても、現行法よりも厳しいカドミウムおよび鉛の溶出限度値が設定されており、 これらの器具及び容器包装の安全性向上に資するものと考える。

E. 参考文献

- 1) 平成16年度厚生労働科学研究費報告書, 食品用器具・容器包装及び乳幼児用玩具の安 全性確保に関する研究, p. 64-108 (2005)
- 2)成田昌稔:食品衛生研究,36(7),7(1986)
- 3) International Standard ISO 4531, Vitreous and porcelain enamels—Release of lead and cadmium from enamelled ware in contact with food (1998)
- 4) International Standard ISO 6486,
 Ceramic ware, glass-celamic ware and
 glass dinnerware in contact with food
 -Release of lead and cadmium (1999)
- 5) International Standard ISO 7086,
 Glass hollowware in contact with food
 --Release of lead and cadmium (2000)

F. 健康危険情報

なし

G. 研究発表 なし

H. 知的財産権の出願・登録状況 なし