

厚生労働省発食安第0909006号 平成20年9月9日

薬事・食品衛生審議会 会長 望月 正隆 殿

諮 問 書

食品衛生法(昭和22年法律第233号)第10条及び第11条第1項の規定に基づき、下記の事項について、貴会の意見を求めます。

記

- 1. デンプンリン酸エステルナトリウムの添加物としての指定削除の可否について
- 2. デンプンリン酸エステルナトリウムの添加物としての使用基準及び成分規格の削除について

平成 20 年 9 月 30 日

薬事・食品衛生審議会 食品衛生分科会 分科会長 吉倉 廣 殿

> 薬事・食品衛生審議会食品衛生分科会 添加物部会長 長尾 美奈子

食品添加物の指定等に関する薬事・食品衛生審議会 食品衛生分科会添加物部会報告について

平成20年9月9日付け厚生労働省発食安第0909006号をもって厚生労働大臣から諮問されたデンプンリン酸エステルナトリウムの添加物としての指定削除の可否並びに使用基準及び成分規格の削除について、当部会において審議を行った結果を別添のとおり取りまとめたので、これを報告する。

デンプンリン酸エステルナトリウムの添加物としての指定削除に関する部会報告書

1. 品目名: デンプンリン酸エステルナトリウム

Sodium Starch Phosphate

2. 概要

デンプンリン酸エステルナトリウムは、昭和39年7月15日に指定された添加物である。 平成19年11月28日に開催された添加物部会において、加工デンプン11品目の指定に ついて審議が行われた。その際に、加工デンプンの1つであるリン酸化デンプンとデンプンリン酸エステルナトリウムの成分規格が一部重複していること ¹⁾が明らかとなった。このことは、リン酸化デンプンが添加物として指定された場合に、1つの物質に対し、2つの成分規格が存在することを意味し、規定上の混乱を招く可能性が示唆された。一方で、デンプンリン酸エステルナトリウムは、平成10年、13年、16年の生産量調査によると、食品添加物としての使用実績が無いとされている ²⁾³⁾。以上の点を踏まえ、都道府県等を通じてデンプンリン酸エステルナトリウムの流通実態の調査 ⁴⁾を行ったところ、販売等の使用実績は確認されなかった。

3. 指定及び規格基準の削除について

デンプンリン酸エステルナトリウムの食品衛生法第 10 条の規定に基づく添加物としての 指定を削除することは差し支えない。また、同法 11 条第 1 項の規定に基づく規格基準を削 除することが適当である。

¹⁾ 両者ともデンプンにリン酸塩を作用させてエステル化を行う。結合リンの規格は、デンプンリン酸エステルナトリウムでは 0.2~3%、リン酸化デンプンでは 0.5%以下と設定されている。成分規格の詳細については参考資料 1 及び参考資料 2 を参照のこと。

²⁾ 平成 16 年度厚生労働科学研究費補助金報告書 生産量統計を基にした食品添加物の摂取 量の推定

³⁾ 平成 19 年度厚生労働科学研究費補助金報告書 生産量統計を基にした食品添加物の摂取 量の推定

⁴⁾ 平成20年2月18日 「デンプンリン酸エステルナトリウムの販売等調査及び加工デンプンの添加物指定に伴う食品表示の変更及び製造業の許可の取得等に関する情報提供について(周知依頼)」(食安基発第0218003号)

デンプンリン酸エステルナトリウム

Sodium Starch Phosphate

性 状 本品は、白~類白色の粉末で、ほとんどにおいがない。

- 確認試験 (1) 本品 0.1g に水 10ml を加え、必要があれば振り混ぜながら加熱して均等な 糊状とした後、冷却する。この液 5 滴に水 10ml を加えて振り混ぜ、ヨウ素試液 1 滴を 加えるとき、 液は、青~赤紫色を呈する。
 - (2) 本品を乾燥し、その約 4g を精密に量り、水 70ml を加え、かき混ぜながら加熱して 均等な糊状とした後、40℃で 30 分間放置する。これにアミラーゼ試液 20ml を加え、 更に 40℃で 30 分間放置した後、冷却する。この液を内径 1cm のカラム管に強酸性陽 イオン交換樹脂約 20ml を詰めた樹脂柱に注いで流出させる。流速は、1 分間約 2ml の速さに調整する。流出後、水 150ml で樹脂柱を洗い、洗液を流出液に合わせ、水を 加えて 250ml とし、A 液とする。

A 液 100ml を量り、内径 1cm のカラム管に弱塩基性陰イオン交換樹脂約 15ml を詰めた樹脂柱に注いで流出させる。流速は、1 分間約 2ml の速さに調整する。流出後、水 80ml で樹脂柱を洗い、洗液を流出液に合わせ、水を加えて 200ml とし、B 液とする。

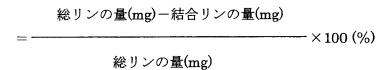
B 液 20ml を量り、分解フラスコに入れ、弱く加熱して約 2ml になるまで濃縮し、冷後、硫酸 5ml 及び過酸化水素 3ml を加え、液が白煙を生じるまで穏やかに加熱する。 冷後、水 50ml を加えて 15 分間再び穏やかに煮沸する。冷後、冷却しながらアンモニ ア水又はアンモニア試液で中和し、水を加えて 100ml とし、C 液とする。

C 液 10ml に硫酸 $(3\rightarrow 10)$ 1ml, モリブデン酸アンモニウム試液 2ml 及び 1-アミノ・2-ナフトール・4-スルホン酸試液 1ml を加えるとき、液は、5 分以内に緑青~青色を呈する。

(3) 本品 1g を 450~550℃で 3 時間強熱して得た残留物は、ナトリウム塩の反応を呈する。

純度試験 (1) 液性 pH6.0~7.5

本品 0.50g を量り、水 50ml を加え、必要があれば振り混ぜながら加熱して均等な糊状とし、放冷した液について測定する。


- (2) 重金属 Pb として 30 µ g/g 以下(1.0g, 第2法, 比較液 鉛標準液 3.0ml)
- (3) ヒ素 As₂O₃として 4.0 μ g/g 以下(0.50g, 第3 法, 装置 B)
- (4) 結合リン 0.2~3.0%

確認試験(2)の C 液 10ml を量り、硫酸(3 \rightarrow 10) 1ml、モリブデン酸アンモニウム試液 2ml、1-アミノ-2·ナフトール・4·スルホン酸試液 1ml 及び水を加えて 25ml とし、30 分

間放置した後、検液とし、波長 740nm における吸光度を測定する。必要があれば C 液の採取量を調整し、吸光度が $0.2\sim0.7$ になるようにする。別にリン酸ーカリウム標準液 5.0ml を量り、水を加えて 1,000ml とする。この液 5.0ml,10ml 及び 20ml をそれぞれ量り、それぞれに硫酸($3\rightarrow10$) 1ml,モリブデン酸アンモニウム試液 2ml,1-アミノ-2-ナフトール-4-スルホン酸試液 1ml 及び水を加えてそれぞれ 25ml とし,30 分間放置した後、波長 740nm におけるそれぞれの吸光度を測定し、検量線を作成する。これらの対照液として硫酸($3\rightarrow10$) 1ml,モリブデン酸アンモニウム試液 2ml 及び 1-アミノ-2-ナフトール-4-スルホン酸試液 1ml を量り、水を加えて 25ml とした液を用いる。ここに得た検量線と検液の吸光度から結合リン量(1mg)を求め、試料の採取量に対する割合を求める。

(5) 無機リン 総リンに対し 20%以下

無機リンの総リンに対する割合

乾燥減量 15.0%以下(105℃, 4時間)

アセチル化アジピン酸架橋デンプン、アセチル化リン酸架橋デンプン、アセチル化酸化デンプン、オクテニルコハク酸デンプンナトリウム、酢酸デンプン、酸化デンプン、ヒドロキシプロピルデンプン、ヒドロキシプロピル化リン酸架橋デンプン、リン酸化デンプン及びリン酸架橋デンプンの食品添加物の指定に関する添加物部会報告書

1. 品目名

① アセチル化アジピン酸架橋デンプン

英名: Acetylated distarch adipate

簡略名:加エデンプン [CAS 番号:なし]

② アセチル化リン酸架橋デンプン

英名: Acetylated distarch phosphate

簡略名:加工デンプン [CAS 番号:68130-14-3]

③ アセチル化酸化デンプン

英名: Acetylated oxidized starch

簡略名:加工デンプン [CAS 番号:68187-08-6]

④ オクテニルコハク酸デンプンナトリウム

英名: Starch sodium octenylsuccinate

簡略名:加工デンプン、オクテニルコハク酸デンプン Na

[CAS 番号: なし]

⑤ 酢酸デンプン

英名:Starch acetate 簡略名:加エデンプン [CAS 番号:9045-28-7]

⑥ 酸化デンプン

英名: Oxidized starch 簡略名: 加エデンプン [CAS 番号: なし]

⑦ ヒドロキシプロピルデンプン

英名:Hydroxypropyl starch

簡略名:加エデンプン [CAS 番号: 9049-76-7] ⑧ ヒドロキシプロピル化リン酸架橋デンプン

英名: Hydroxypropyl distarch phosphate

簡略名:加工デンプン [CAS 番号:53124-00-8]

⑨ リン酸モノエステル化リン酸架橋デンプン

英名: Phosphated distarch phosphate

簡略名:加エデンプン [CAS 番号:なし]

⑩ リン酸化デンプン

英名: Monostarch phosphate

簡略名:加エデンプン [CAS 番号:63100-01-6]

① リン酸架橋デンプン

英名: Distarch phosphate

簡略名:加エデンプン [CAS 番号:55963-33-2]

2. 製法、分子式、性質

製法、分子式、性質は以下の通り。なお、性質はデンプンと比較した場合の付加的性質を示す。

① アセチル化アジピン酸架橋デンプン

製法:デンプンを無水酢酸と無水アジピン酸でエステル化する。

分子式:(C₆H₁₀O₅),(C₆H₈O₇),(C₂H₃O),

デンプン分子間のいくつかの水酸基がアジピン酸基で架橋されている。また、 デンプン分子の水酸基のうち、いくつかがアセチル化されている。

性 質: 糊化開始温度が低い。加熱時に膨潤しにくい。離水等のデンプン老化が遅い。耐せん断性、耐酸性を有する。(酢酸デンプンと架橋デンプンの性質を併せ持つ。)

② アセチル化リン酸架橋デンプン

製 法:デンプンをオキシ塩化リン又はトリメタリン酸及び無水酢酸又は酢酸ビニルでエステル化する。

分子式: (C₆H₁₀O₅)_n (PHO₂)_x (C₂H₃O)_y

デンプン分子間のいくつかの水酸基がリン酸で架橋されている。また、デンプン分子の水酸基のうち、いくつかがアセチル化されている。

性 質:アセチル化アジピン酸架橋デンプンと同様。

③ アセチル化酸化デンプン

製 法:デンプンを次亜塩素酸ナトリウムで処理(酸化)後、無水酢酸でエステル化する。

分子式: (C₆H₁₀O₅)_n(CHO₂)_x(C₂H₃O)_y

デンプン分子の水酸基のうち、いくつかがアセチル化、酸化されている。

性 質: 糊化開始温度が低い。糊液の粘性が低い。透明性が高い。老化が遅い。色が白い。 (酢酸デンプンと酸化デンプンの性質を併せ持つ。) ④ オクテニルコハク酸デンプンナトリウム

製法:デンプンを無水オクテニルコハク酸でエステル化する。

分子式: (C₆H₁₀O₅)_n[C (0) CH (CH₂COONa) CH₂CH: CH (CH₂)_aCH₃]_e

デンプン分子の水酸基のうち、いくつかがオクテニルコハク酸でエステル化されている。

性 質:糊化温度はやや低い。粘性が高い。保存安定性も高い。乳化能を持つ。

⑤ 酢酸デンプン

製法:デンプンを無水酢酸又は酢酸ビニルでエステル化する。

分子式: $(C_6H_{10}O_5)_n(C_2H_3O)_x$

デンプン分子の水酸基のうち、いくつかがアセチル化されている。

性 質:グルコース 1 残基当たりの置換基の数(以下「置換度」という。)が増すほど糊化 温度が低下し、弾力が減少し、粘着性が強い。デンプンを含む食品の調理後の老化 に対する安定性と透明性が高い。

⑥ 酸化デンプン

製法:デンプンを次亜塩素酸ナトリウムで処理(酸化)したもの。

分子式:(C₆H₁₀O₅)_n(CHO₂)_x

デンプン分子の水酸基のうち、いくつかが酸化されている。

性質:糊化開始温度が低い。糊液の粘性が低い。糊液の粘度安定性が高い。老化が遅い。

透明性が高い。色が白い。

⑦ ヒドロキシプロピルデンプン

製法:デンプンをプロピレンオキシドでエーテル化したもの。

分子式: (C₆H₁₀O₅),[CH₂CH(OH)CH₂],

デンプン分子の水酸基のうち、いくつかがヒドロキシプロピル基でエーテル化されている。

性 質: ヒドロキシプロピル基の導入により親水性が増大する (置換度 0.1 で糊化温度が 10℃程度低下する)。水と加熱すると均一な糊液となる。糊液は冷却しても透明であり、冷蔵や、凍結融解に対して優れた安定性を持つ。

⑧ ヒドロキシプロピル化リン酸架橋デンプン

製法:デンプンをトリメタリン酸ナトリウム又はオキシ塩化リンでエステル化し、プロピレンオキシドでエーテル化したもの。

分子式: (C₆H₁₀O₅)_n (C₃H₇O)_x (PHO₂)_y

デンプン分子間のいくつかの水酸基がリン酸で架橋されている。また、デンプン分子の水酸基のうち、いくつかがヒドロキシプロピル基でエーテル化されている。

性 質: ヒドロキシプロピル基の導入により親水性が増大し、糊化温度が低下する、加熱時に糊液が膨潤しにくい。粘性が調節されている。冷却時、凍結、融解時及び加熱時の透明性・安定性が高い。(ヒドロキシプロピルデンプンとリン酸架橋デンプンの性質を併せ持つ。)

⑨ リン酸モノエステル化リン酸架橋デンプン

製法:リン酸化デンプンとリン酸架橋デンプンの製造法を組み合わせて製造したもの。

分子式: (C₆H₁₀O₅)_n(PHO₂)_x(PH₂O₃)_y

デンプン分子間のいくつかの水酸基がリン酸で架橋されている。また、デンプ

ン分子の水酸基のうち、いくつかがリン酸化されている。

性 質:透明で安定性が高い。凍結に対する安定性が高い。電解性があるので耐塩性、耐酸性が低い。

⑩ リン酸化デンプン

製法:デンプンをオルトリン酸、又はオルトリン酸カリウム、又はオルトリン酸ナトリウム、又はトリポリリン酸ナトリウムでエステル化する。

分子式: (C₆H₁₀O₅)_n(PH₂O₃)_x

デンプン分子の水酸基のうち、いくつかがリン酸化されている。

性 質:置換度が上がるにつれて糊化しやすくなる。置換度 0.05 付近から冷水でも膨潤する。糊液は高粘性で透明である。保水性が強く老化しにくいので耐冷凍性が高い。

① リン酸架橋デンプン

製法:デンプンをトリメタリン酸ナトリウム又はオキシ塩化リンでエステル化する。

分子式:(C₆H₁₀O₅)_n(PHO₂)_x

デンプン分子間のいくつかの水酸基がリン酸で架橋されている。

性 質:デンプン粒の膨潤や糊化が抑制され、かく拌や酸による粘度低下に抵抗性を持つ。 低架橋度のものは、デンプン粒の膨潤が適度に抑制されて粘度が上昇するが、高架 橋度ものはデンプン粒の膨潤が強く抑制され、粘度は低下する。

3. 用途

糊料、乳化剤、増粘安定剤等

4. 概要及び諸外国での使用状況

(1) 加エデンプンの指定の経緯

加工デンプンは、一般にデンプン本来の物理的性状(高粘性、冷却時のゲル化等)を改善するために、物理的、酵素的又は化学的に処理を行ったものを称しており、糊料、乳化剤、 増粘安定剤及び食品の製造用剤として広く利用されている。

このうち、通常の調理過程でも起こりうる加熱処理等の物理的処理を行ったもの及びアミラーゼ等の酵素による処理を行ったものについては、我が国及び EU においては食品として取扱われているが、米国においては添加物として取扱われている。一方、各種化学物質を用いて化学的処理を行ったものは、米国及び EU ではともに添加物として取扱われている。

我が国においては、化学的処理を行ったもののうち、デンプングリコール酸ナトリウム及びデンプンリン酸エステルナトリウムの2品目が昭和30年代に添加物として指定されている。その他の化学的処理を行ったものは、昭和54年以降、FAO/WHO合同食品添加物専門家会議(JECFA)において安全性評価が終了しているものに限り、食品として取扱われている。

このようなことから、化学的処理を行ったものは、米国及び EU においては添加物として 取扱われており、我が国においても該当する 11 品目については、添加物として指定を行う ものである。

(2) 加エデンプンの概要

加工デンプンは、デンプンを食品に工業的に利用する際に冷水、室温溶解性がない、糊化温度が高い、加熱溶解時粘性が安定しない、放冷時、保存時の物性安定性に欠け、離水するといった欠点を克服するために、デンプンに物理的、酵素的、又は化学的に加工を加えたものである。物理的加工は、乾燥、加熱、かく拌等の処理、酵素的加工はα-アミラーゼなどでの酵素処理、化学的加工は各種の化学物質を用いてデンプンを構成するグルコー

ス鎖を化学的に修飾する、又はデンプン分子間若しくは分子内架橋処理を行うものをいう。 化学的処理による加工デンプンは、グルコースの水酸基に種々の官能基を導入して様々な 特性を付与したもので、欧米を始めとする諸外国において使用されている。

(3)諸外国での使用状況

米国では、加工デンプンは 1950 年代から FDA の管理下で使用されており、現在は、FDA の連邦規則集 21 (21CFR) の中で、ヒトが摂取する食品への直接添加が認められる食品添加物とされている。ただし、21CFR では個々の食品添加物名を記載するのではなく、化学的処理に使用する物質名が記載されており、今回指定の対象としている 11 品目の加工デンプンを製造するための物質は全てこの中に含まれている。

EUでは、1995年に今回対象としている 11 品目の加工デンプンの使用を認めている。ただし、乳幼児を対象とする食品に対し、以下のとおり使用基準を設定している。

- ・Infant Formulae for infant 及びFollow-on Formulae for infant に対しては加工デンプンを使用してはならない。
- ・Weaning Food for Infant and Young Children に対しては、ヒドロキシプロピルデンプン、ヒドロキシプロピル化リン酸架橋デンプン以外の 9 品目の加工デンプンが、5%を上限として使用することができる。

JECFA では、今回対象としている 11 品目の加工デンプンは 1969 年から 2001 年にかけ、各時点で入手可能な資料に基づき安全性に関して慎重な検討が行われ、最終的に各物質について「ADI を特定しない (not specified) 」と評価されている。

5. 食品添加物としての有効性

デンプンは、増粘性の付与(例:ソース)、食感・外観の改善(例:プディング)、粘度調整(例:洋菓子の詰め物)、乳化安定(例:ドレッシング)、固結防止(例:アイシング)など、技術的機能性を期待して食品に使用される場合が多いが、未加工のデンプンは原料や製造法の違いなどにより構造や物性は一様ではなく、食品加工に利用するにあたり一般に以下のような欠点がある。

① 水への溶解性

冷水、温水に溶解性がなく、水を加えただけでは増粘効果が得られない

② 加熱による糊化とその安定性

水を加えたけん濁液を加熱するとデンプンの種類によって異なる一定の温度からデンプン粒は水を吸収して膨潤を始め、粘度が上がり糊化する。液は透明になり溶解状態になる。加熱を続けると膨潤が進み、粘度も最高値を記録するが、ある温度を過ぎるとデンプン粒が崩壊し、粘度が下降し、デンプン分子は加熱前の結晶状態からコロイド状に分散する。このように未加工のデンプンは加熱処理で物性が変化するため、デンプンを加えた食品の物性(例えば粘性)が安定しない。(図1)

③ 老化

加熱して糊化したデンプン糊液は、放冷により流動性を失い、白濁し、粘性を失い離水する。コロイド状に分散したデンプン分子は再び結晶化する。このため、未加工のデンプンを加えた食品、特に冷蔵、冷凍食品では組織、粘度の変化、離水が起きやすい。

④ 熱、酸、機械的せん断による物性変化 糊化しコロイド状に分散したデンプンは高温・加圧(例:レトルト殺菌)、酸(酸性食品)、 機械的せん断力(例:強い攪拌)などによってデンプン分子が低分子に切断され粘度低下等 の組織、物性変化が起き易い。

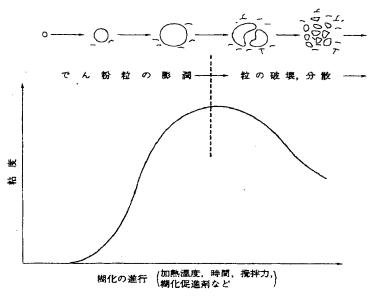
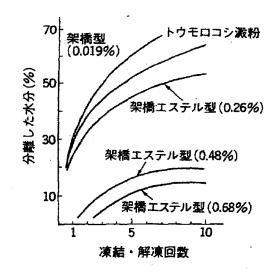



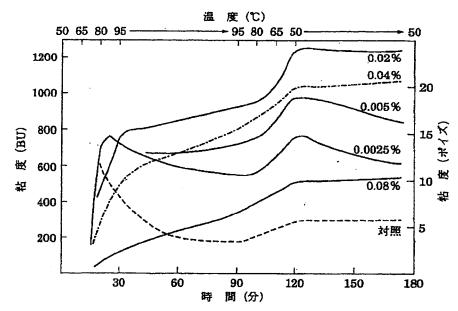
図1 デンプンの糊化の模式図

加工デンプンは、このような欠点を補うと共に、様々な機能性を増強・付与し、さらに、食品の調理・加工性を改善する点で有用性がある。

(1)保存時の老化抑制

未加工のデンプンを含む食品、特にチルド流通食品や冷凍食品では保存に伴い質感、粘性の低下、離水が起き品質の劣化や冷凍変性が起きることがあるが、エステル基やエーテル基を導入した加工デンプンの使用によってこのような変化を抑えることができる(図2)。

(澱粉濃度 4%, 括弧内数字は結合リン含量 (%))


図2 リン酸デンプンの凍結―解凍特性図

(2) 機能性の増強・付与

加工デンプンは、官能基や架橋の導入、酸化処理によって、加工前のデンプンが持っている性質、例えば、糊化温度、粘性、結着性・崩壊性、食感、膨化性、外観、粉末化、油脂吸着性等を改善し、改変することによって食品の嗜好性を高める。

例として、架橋度の異なるリン酸架橋デンプンについて、加熱に伴う粘度変化の状況 (アミログラム)を図3に示す。デンプンにトリメタリン酸塩を僅か 0.0025%添加し処理 した場合でも無処理デンプンと違いが認められ、デンプン粒の膨化、糊化が抑えられ安定な粘度が確保されている。架橋度の増大に伴い、粘度は上昇するが、0.02%以上では逆に粘度は低下し、0.08%では粘度はあまり上昇しない。

このような機能性の増強した加工デンプンを食品に添加して用いることにより、例えば、 麺類におけるゆで時間の短縮、畜肉食品製造時のドリップ防止、もちやおでん等の調理時 の煮崩れ防止、揚げ物における衣のはがれ防止など、調理加工作業性の向上にも役立つ。

(図中の数字はデンプンに対する架橋化剤、トリメタリン酸の添加率)

図3 架橋ワキシーモロコシデンプンのアミログラム

(3) 食品への使用試験

① リン酸化デンプンの水系食品への利用¹⁾

無処理コーンスターチ、0.13%オルトリン酸処理コーンスターチ(EB 851)、0.37%オルトリン酸処理コーンスターチ(EB 852)を試料とし、それら 7.5 g を試験溶液(クランベリー果汁、水)100 ml にそれぞれ加え懸濁し、加熱攪拌して 190° F (87.8°C) まで加熱し、10 分間同温度で静置した。ショ糖 15 g を加え攪拌しながら溶かし、容器を 60° F (15.6°C) の水浴に漬け、攪拌せず 5 時間置き、性状や透明性を観察したところ、リン酸の置換度が高いほど、老化しにくく、透明性に優れているという結果が得られた(表 1)。

表1 リン酸化デンプンの水系食品における性状等

試 料	クランベリー界	具汁(約 pH3)	水(約 pH6)	
	性状	透明性	性状	透明性
無処理	硬いゲル	白濁	硬いゲル	白濁

¹⁾ National Starch and Chemical Co. Starch Phosphate 申請書及び資料 1967

EB 851	やや柔らかいゲル	濁り抑制	硬いゲル	濁り抑制
EB 852	老化しない	透明	やや柔らかいゲル	透明性向上

② アセチル化アジピン酸架橋デンプンの凍結—解凍安定性2)

無水アジピン酸(デンプンに対し、0.12%)及び無水酢酸(デンプンに対し 3.0、5.0、9.0、10.0%)でそれぞれ処理したワキシーコーンスターチを試料とし、それら 7.5 g を試験溶液 (クランベリー果汁、水) 100 ml にそれぞれ加え懸濁し、加熱攪拌して 190° F(87.8° C) まで加熱し、10 分間同温度で静置した。ショ糖 15g を加え攪拌しながら溶かし、容器を 60° F(15.6° C)の水浴に漬け、攪拌せず 5 時間置き、 0° F(-17.8° C) で 16 時間保存後、室温に 6 時間おき解凍。これを 1 サイクルとし、数回繰り返した時の外観と食感を調べた。その結果アセチル基が多いほど、透明性に優れ、食感の改良や老化の遅れが見られた(表 2)。

表 2	アセチ	ル化ア	ジピン	ν酸架橋デン	ノブンの凍結-	—解凍安定性
				,		

無水酢酸処	アセチル化	クランベリー果汁(pH3)	水
理農度	度 (%)		
(%)			
3. 0	0. 96	サイクルを2回繰り返すと	サイクルを4回繰り返すと
		透明性が低下。3回目以降乳	曇る。5回目以降乳白。
		白。7回以降離水し、塊あり。	·
5. 0	1. 61	サイクルを3回繰り返すと	サイクルを4回繰り返すと
		曇る。6回目以降乳白、塊あ	曇る。6回目以降乳白。
		り。9回以降離水し、塊状。	
9. 0	2. 85	サイクルを6回繰り返すと	サイクルを6回繰り返すと
	:	曇る。10回以上でも離水な	曇る8回目以降乳白。
		く、柔らかく滑らかな食感。	
10.0	3. 22	サイクルを6回繰り返すと	サイクルを8回繰り返すと
		曇る。10回以上でも離水な	曇る9回目以降乳白。
		く、柔らかく滑らかな食感。	

6. 食品安全委員会における評価結果について

食品安全基本法(平成 15 年法律第 48 号)第 24 条第 1 項第 1 号の規定に基づき、平成 16 年 11 月 26 日厚生労働省発食安第 1126002 号により食品安全委員会あて意見を求めた加工デンプン (アセチル化アジピン酸架橋デンプン、アセチル化リン酸架橋デンプン、アセチル化酸化デンプン、オクテニルコハク酸デンプンナトリウム、酢酸デンプン、酸化デンプン、ヒドロキシプロピルデンプン、ヒドロキシプロピル化リン酸架橋デンプン、リン酸モノエステル化リン酸架橋デンプン、リン酸化デンプン及びリン酸架橋デンプンに限る。) に係る食品健康影響評価 については、平成 17 年 3 月 23 日、平成 17 年 5 月 17 日、平成 19 年 8 月 27 日及び平成 19 年 9 月 28 日に開催された添加物専門調査会の議論を踏まえ、以下の評価結果が平成 19 年 11 月 28 日付けで通知されている。

今回評価の対象となった11種類の加工デンプンが添加物として適切に使用される場合、安全性に懸念がないと考えられ、一日摂取許容量(ADI)を特定する必要はないと評価した。

²⁾ National Starch and Chemical Co. Starch Phosphate 申請書及び資料 1966

但し、リスク管理機関は今後、乳幼児向け食品における加工デンプンの使用についてモニタリングを実施することを検討するべきである。また、プロピレンオキシドが残留する可能性のある加工デンプンについては、技術的に可能なレベルでプロピレンオキシドの低減化を図るよう留意するべきである。

なお、その詳細は下記の通りである。

今回評価の対象となった11種類の加工デンプンについて、提出された毒性試験成績等は必ずしも網羅的なものではないが、それぞれの化学構造の類似性及び認められている毒性影響から総合的に判断し、これらをグループとして評価することは可能と判断した。

加工デンプンの安全性試験成績(表 1~11)を評価した結果、発がん性、生殖発生毒性及び遺伝毒性を有さないと考えられる。また、反復投与毒性試験では、高用量投与群で、主に盲腸や腎臓に変化が認められているが、これらの変化は通常の未加工のデンプンでも発生するラットに特異的な所見であり、ヒトに対する安全性評価にほとんど関係しないと考えられた。

EU においては、加工デンプンのうち9種類について、ラットの長期毒性試験でみられた腎臓の変化を根拠に乳幼児向け食品に対し、5%の使用制限を設けているが、その論拠は明確となっておらず、EU の規制の妥当性は判断できない。従って、以下の理由から、わが国で EU と同様の規制を設ける必要性は低いと考えられる。

- 1. 規制の根拠とされている腎臓の変化は、未加工のデンプンでも発生するラットに特異的な所見であり、ヒトの安全性評価においては重要なものではないと考えられること。
- 2. わが国の乳幼児(1~3歳)の平均の加工デンプン推定摂取量は、4.90~6.31g/ヒト/日であり、乳幼児向け食品の摂取量は不明であるが、より安全側にたって炭水化物の平均摂取量に対する割合を算出したところ、5%を超えないと推察されること。

また、EU においては、ヒドロキシプロピルデンプン及びヒドロキシプロピル化リン酸架橋 デンプンの2種類の加工デンプンについては、エーテル化剤として用いられるプロピレンオキシド等の安全性情報が不足していることから、乳幼児向け食品には用いるべきではないとされている。プロピレンオキシドは、遺伝毒性発がん物質であることが否定できないことから、米国における発がんリスクの定量評価結果をもとに、わが国の推定摂取量に基づく生涯リスクを導いたところ、一般に遺伝毒性発がん物質の無視しうるレベルとされる 100 万分の 1 レベルを下回った。また、生体組織に吸収されたプロピレンオキシドは、グルタチオン抱合や加水分解により代謝、解毒されるとされており、そのリスクは極めて低いと考えられた。

今回評価の対象となった11種類の加工デンプンについては、わが国においても、食品として長い食経験があり、これまでに安全性に関して特段の問題は指摘されていない。JECFAでは、「ADIを特定しない (not specified)」と評価している。

以上から、今回評価の対象となった11種類の加工デンプンが添加物として適切に使用される場合、安全性に懸念がないと考えられ、ADIを特定する必要はないと評価した。

但し、リスク管理機関は今後、乳幼児向け食品における加工デンプンの使用についてモニタリングを 実施することを検討するべきである。また、プロピレンオキシドが残留する可能性のある加工デンプ ンについては、技術的に可能なレベルでプロピレンオキシドの低減化を図るよう留意するべきである。

7. 摂取量の推計

上記の食品安全委員会の評価結果によると以下の通りである。

わが国に輸入される加工デンプンの量は、2002 年度合計量で 171 千トン、うちタイ国からが全体の約 55%と多く約 95 千トン、ほかドイツ 14.2 千トン、オーストラリア 13.7 千トン、米国 13.7 千トン、スウェーデン 11.1 千トンなどとなっている。国内における加工デンプンの生産量は、デキストリン(食品)を除いて約 40 万トンで、輸入分を加えると約 60 万トンとなり、このうち、約 15 万トンが食品に使用されていると推定されている。

平成 16 年の国民健康・栄養調査報告によると、 $1\sim6$ 歳までの食品の総摂取量は 1273.5 g/ヒト/日とされ、このうち炭水化物の平均摂取量は <math>186.7 g/ヒト/日とされている。

また、国民健康・栄養調査報告による各食品の各年齢段階における摂取量データに、関連事業者より提供された加工デンプンの各食品への添加率をかけあわせることにより、一人当たりの一日の加工デンプンの平均摂取量は、 $1\sim3$ 歳の乳幼児で $4.90\sim6.31$ g/ヒト/日、4歳以上で8.19 g/ヒト/日と推定される。

米国における NAS/NRC 調査報告書では、焙焼デンプン、漂白デンプン等も含む加工デンプンの摂取量は 38,300 トン (米国の人口を 2.1 億人として約 0.5 g/ヒト/日に相当) と報告されている。

英国における食品添加物の摂取量調査報告では、化学的加工デンプン類の摂取量は 1509.3 mg/ヒト/日とされている。

8. 新規指定について

アセチル化アジピン酸架橋デンプン、アセチル化リン酸架橋デンプン、アセチル化酸化デンプン、オクテニルコハク酸デンプンナトリウム、酢酸デンプン、酸化デンプン、ヒドロキシプロピルデンプン、ヒドロキシプロピル化リン酸架橋デンプン、リン酸モノエステル化リン酸架橋デンプン、リン酸化デンプン及びリン酸架橋デンプンを食品衛生法第 10 条に基づく添加物として指定することは差し支えない。ただし、同法第 11 条第 1 項の規定に基づき、次の通り成分規格を定めることが適当である。

また、食品安全委員会による評価結果や、米国においてGMPのもとで使用することとされ、特段の使用基準が設定されていないこと、また、EUにおいて離乳食等を除いた一般の食品に対して、必要量を使用することができるとされ、特段の使用基準が設定されていないことを踏まえ、使用基準は設定しないこととすることが適当である。ただし、その添加は食品中で目的とする効果を得る上で必要とされる量を超えないものとすることが前提であり、その旨を関係業界等に周知すること。

ただし、食品安全委員会の評価結果では、EUにおける離乳食等に対する規制を考慮し、「今回評価の対象となった11種類の加工デンプンが添加物として適切に使用される場合、安全性に懸念がないと考えられ、ADIを特定する必要はないと評価した。」としながらも、「乳幼児向け食品における加工デンプンの使用についてモニタリングを実施することを検討するべきである。」としている。これを踏まえ、食品添加物としての指定後、調製粉乳*及び離乳食に対する加工デンプンの使用の実態を調査整理した上で、改めて食品安全委員会に報告することが適当である。

*調製粉乳は、乳又は乳製品のほか、その種類及び混合割合につき厚生労働大臣の承認を受けて使用するもの以外のものの使用が認められていない。

(1)成分規格について

アセチル化アジピン酸架橋デンプン、アセチル化酸化デンプン、アセチル化リン酸架橋デ ンプン、オクテニルコハク酸デンプンナトリウム、酢酸デンプン、酸化デンプン、ヒドロキ シプロピル化リン酸架橋デンプン、ヒドロキシプロピルデンプン、リン酸架橋デンプン、リ ン酸化デンプン及びリン酸モノエステル化リン酸架橋デンプンの成分規格をそれぞれ別紙1、 3、5、7、9、11、13、15、17、19、21のとおり設定することが適当である。 (各成分規格(案)とそれぞれ対応する国際規格等との比較は別紙2、4、6、8、10、 12、14、16、18、20、22、設定根拠は別紙23のとおり。)

なお、ヒドロキシプロピルデンプン及びヒドロキシプロピル化リン酸架橋デンプンに残存す るプロピレンオキシドについては、JECFA等において規格が設定されていないこと及びサンプ ルとして提出された検体からは、検出されなかった(検出限界約 $0.006 \, \mu\, \mathrm{g/g}$)ことから成分規 格としては設定する必要はないが、不純物として含有されることは好ましくないため、技術的 に可能な範囲で低減化を図るよう関係業界等に周知すること。

(2) デンプンリン酸エステルナトリウムについて

デンプンリン酸エステルナトリウム*は、今回指定するリン酸化デンプンと成分規格が一 部重複するものと考えられる。つまり、1つの物質に対し、成分規格が2つ存在することに なり、規定上混乱することになる。一方で、デンプンリン酸エステルナトリウムは、平成 10 年、13年、17年の生産量調査によると、食品添加物としての使用実績が無いとされている334。

このことを踏まえ、デンプンリン酸エステルナトリウムについて、都道府県等を通じて念 のため流通実態の調査を行ったところ、販売等の使用実績は確認できなかった。ついては、 リン酸化デンプンの指定の際に、本品目の指定を削除するのが適当である。

*デンプンリン酸エステルナトリウムは、昭和39年に食品添加物として指定されている。 デンプンに、リン酸塩を作用させて、エステル化して得られるものであり、結合リンの 規格として、0.2~3.0%が設定されている。リン酸化デンプンの結合リンの規格(案) は 0.5%以下としている。

. .

³⁾ 平成 16 年度厚生労働科学研究費補助金報告書 生産量統計を基にした食品添加物の摂取量の推定

リン酸化デンプン

Monostarch Phosphate

[63100-01-6]

定 義 本品は、デンプンをオルトリン酸、そのカリウム塩若しくはナトリウム塩又は トリポリリン酸ナトリウムでエステル化して得られたものである。

性 状 本品は、白〜類白色の粉末、薄片又は顆粒で、においがない。

確認試験 (1) 「アセチル化アジピン酸架橋デンプン」の確認試験(1)を準用する。

(2) 「アセチル化アジピン酸架橋デンプン」の確認試験(2)を準用する。

純度試験 (1) リン Pとして 0.5%以下

「アセチル化リン酸架橋デンプン」の純度試験(3)を準用する。

- (2) 鉛 Pbとして 2.0 µ g/g 以下 (5.0 g, 第1法)
- (3) ヒ素 As₂O₃として 4.0 μ g/g 以下 (0.50g, 第 3 法, 装置 B)
- (4) 二酸化硫黄 50 μ g/g 以下 「アセチル化アジピン酸架橋デンプン」の純度試験(5)を準用する。

乾燥減量 21.0%以下 (120℃, 13.3kPa 以下, 4 時間)

(参考)

これまでの経緯

平成20年 9月 9日 薬事・食品衛生審議会へ諮問

平成20年 9月24日

薬事・食品衛生審議会食品衛生分科会添加物部会

平成20年10月10日 薬事・食品衛生審議会食品衛生分科会

●薬事・食品衛生審議会食品衛生分科会添加物部会(平成 20 年 9 月現在) [委員]

氏 名	所 属
石田 裕美	女子栄養大学教授
井手 速雄	東邦大学薬学部教授
井部 明広	東京都健康安全研究センター
北田 善三	畿央大学健康科学部教授
佐藤 恭子	国立医薬品食品衛生研究所食品添加物部第一室長
棚元 憲一	国立医薬品食品衛生研究所食品添加物部長
長尾 美奈子※	慶應義塾大学薬学部客員教授
堀江 正一	埼玉県衛生研究所 水・食品担当部長
米谷 民雄	静岡県立大学 食品栄養科学部 客員教授
山内 明子	日本生活協同組合連合会組織推進本部 本部長
山川 隆	東京大学大学院農学生命科学研究科准教授
山添 康	東北大学大学院薬学研究科教授
吉池 信男	青森県立保健大学健康科学部 栄養学科長 公衆栄養学教授
由田 克士	独立行政法人国立健康・栄養研究所 栄養疫学プログラム国民
	健康・栄養調査プロジェクトリーダー

※部会長

答申 (案)

デンプンリン酸エステルナトリウムの食品衛生法第10条の規定に基づく添加物としての指定を削除することは差し支えない。また、同法11条第1項の規定に基づく規格基準を削除することが適当である。