関係は無いとの成績が得られており、JECFA は、CRS と L·グルタミン酸ナトリウムの摂取との間に明確な関係は認められないと結論している。(参照 9、13、35、36)

L·グルタミン酸ナトリウムに関する最初の系統的な臨床試験報告として、 大量のL·グルタミン酸ナトリウムを経口投与、あるいは静脈内投与したヒト に皮膚の灼熱感(胸部に始まり頸部、上腕部に広がる)、顔面のこわばり、胸 痛が発現したとの 1968 年の報告がある。投与後症状が現れるまでの時間は、 静脈内投与で 17~20 秒、経口摂取で 12~25 分であったが、症状の内容は投 与法により異なり、静脈内投与では上記の 3 徴候すべてがみられたが、経口 投与では一部が認められたのみであった。また、症状の発現に必要な投与量 には個人差があり、静脈内投与では 25~125 mg、経口投与では 1.2~12 g とされている。症状の発現は静脈内投与の場合の方が鋭敏で、たとえば 21 g の経口摂取で症状の発現がなかった例が、50 mg の静脈内投与で典型的な症 状を示したとされている。その他、500 mg の静脈内投与により胸痛を示した 例について心電図の検査を実施したが、異常所見はなかったとされている。 (参照 13)

その後、L-グルタミン酸ナトリウムの摂取と CRS の関係について二重盲検法による多くの臨床試験が報告されており、L-グルタミン酸摂取群 (各群 1.25~5 g) を設けた新たな試験成績を含めた 2000 年に発表された論文では、L-グルタミン酸摂取群においてプラセボ投与群に比べて何らかの症状を示す例数は多いが、典型的な CRS の徴候がみられた例はなく (参照 36)、しかも症状の発現と血中の L-グルタミン酸濃度の間にも相関が認められなかったとされている。したがって、大量の L-グルタミン酸ナトリウムの摂取後に認められた胸やけ、ふらつき、顔や肩のこわばり、胸痛などの症状は L-グルタミン酸に特異的なものではないと考えられた (参照 13、36、37)。

② 気管支喘息

中華料理を食べてから 12 時間後に気管支喘息の発作を起こした 2 名について、さらに L・グルタミン酸ナトリウム (2.5 g) を含有するカプセルを摂取させたところ、10~12 時間後に最大呼気流速(Peak expiratory flow rate; PEFR)の減少が認められたとする 1981 年の報告がある。この知見からは L・グルタミン酸ナトリウムが気管支の攣縮に関与しているものと考えられたが、この試験については、[1] 呼吸機能の病態判定には PEFR よりも信頼性の高い方法を用いるべきこと、[2] プロトコールではプラセボ試験の直前にテオフィリンの投与が中止されているため、L・グルタミン酸ナトリウムによる試験時には体内のテオフィリン濃度が著しく低下しており、このような状況ではプラセボと被験物質による反応の差異を区別することは困難である

ことが指摘された。

1987年以降、L·グルタミン酸ナトリウムと気管支喘息の関係を否定する結果が報告されている。中華料理の摂取後に喘息発作を起こした病歴をもつ計45名の患者について、L·グルタミン酸ナトリウム摂取による喘息の惹起試験が実施されているが、陽性の反応はみられなかった。また、中華料理の摂取後の喘息発作がみられなかった109名の喘息患者について同様の試験が行われているが、陽性反応の例はなかったと報告されている。(参照13、38)

3. 一日摂取量の推計等

(1) わが国における評価

「あなたが食べている食品添加物」(平成 13 年食品添加物研究会編)によると、食品から摂取される L-グルタミン酸類の一人あたりの平均の一日摂取量は、加工食品からの添加物としての摂取が主であると考えられ、1998 年から 1999年の調査において L-グルタミン酸として 1,198 mg である。(参照 39)

年齢別に比較すると、2000年の調査において 1.6 歳乳幼児における加工食品由来の L-グルタミン酸としての平均摂取量は 924 mg、7.14 歳では 1,342 mg、15.19 歳では 1,770 mg、20.64 歳では 1,900 mg、65 歳以上では 1,640 mg と報告されている。(参照 40)

一方、平成 16 年度厚生労働科学研究によれば、食品添加物の食品向け生産量を基に算出される L-グルタミン酸類の一人あたりの平均の一日摂取量は、L-グルタミン酸として約 1,290 mg と推定される。なお、その 99%以上がナトリウム塩である。(参照 41)

なお、平成 16 年国民健康・栄養調査におけるタンパク質の平均一日摂取量 $70.8 \, \mathrm{g} \, (1\sim 6 \, \mathrm{k}: 46.5 \, \mathrm{g})$ を基に、ヒトが一日で摂取する食事性タンパク質由来の総アミノ酸量のうち約 20%が L ・グルタミン酸とされており、またその吸収率は 40%とされていることから(参照 8)、食事性タンパク質の全てがアミノ酸となると仮定した場合、食事性タンパク質からの L ・グルタミン酸の吸収量は約 $6 \, \mathrm{g} \, (1\sim 6 \, \mathrm{k}: \mathrm{harmon})$ と推定される(参照 42)。

(2)米国における評価

米国における NAS/NRC GRAS 物質調査によると、L-グルタミン酸類の食品 への使用は 1960 年から 1970 年の間に増加し、1970 年の総使用量は 14 トン (メーカー報告量の補正値)、使用対象食品と使用濃度(平均値)は、スープ類、 粉末スープに 0.42%であった(加工食品メーカー報告に基づく)。(参照 43)

米国における NAS/NRC 食品添加物等使用調査(1989年)によると、食品添加物等のメーカーからの報告に基づく、L·グルタミン酸アンモニウムの食品への 1975年、1982年、1987年の年間使用量は、24千ポンド(10.9トン)、61千ポンド(27.7トン)、66.6千ポンド(29.9トン)と報告されている。一方、

L-グルタミン酸ナトリウムの食品への 1975 年、1982 年、1987 年の年間使用量は、25,500 千ポンド (11,600 トン)、28,400 千ポンド (12,900 トン)、18,600 千ポンド (8,440 トン) であった。(参照 44)

また、FDA の 1996年の報告によると、米国における L-グルタミン酸ナトリウムの一日平均摂取量は $0.2\sim0.5\,\mathrm{g}$ とされている。(参照 37)

また、FDA の委託を受けた FASEB は、1978 年時点で、市販の乳幼児または若年者用の食品に添加してよいと判断できるような安全性データーが不十分であることから、現状として、L-グルタミン酸及びその塩類はこれらの食品に対しては添加していないと考えられるとし、FDA に報告した。(参照 35)

(3) EU における評価

Lグルタミン酸アンモニウムを含む Lグルタミン酸類は、1990 年にグループ として「ADI を特定しない」とされていることから、EU加盟各国が最近実施 した食品添加物の摂取量調査において、実摂取量算定の優先度は低いと報告されている。(参照 45)

なお、1992 年の FASEB 報告書によると、EU における食品における L·グルタミン酸ナトリウムの一日摂取量は 350 mg を超えないとの報告がある。(参照 46)

Ⅲ. 国際機関等における評価

1. JECFA における評価

JECFA は 1971年の第 14 回及び 1973年の第 17 回会議において、L-グルタミン酸、同アンモニウム塩、同カルシウム塩、同ナトリウム塩及び同カリウム塩について評価し、ADI をグループとして $0\sim120$ mg/kg 体重/日(L-グルタミン酸換算)と設定している。この会議において、動物実験において新生児でL-グルタミン酸に対し高い感受性を示す懸念が示唆されたことから、この ADI は生後 12 週以前の乳児には適用すべきでないとされた。(参照 9、47)

その後、L·グルタミン酸ナトリウムの摂取量が一部のアジア諸国において近年増加しており、上記 ADI を超える可能性があるとの情報があり、JECFA は 1987年の第 31 回会議において、1973年以降に集められた L·グルタミン酸に関する、特に代謝、神経毒性、内分泌機能への影響並びに過敏症に関する知見についての情報に基づいて検討した。論点は次の 2 点であった。(参照 9、48)

(1) 乳幼児に対する神経毒性の懸念

大量のL·グルタミン酸塩の経口投与により、母乳中のL·グルタミン酸濃度は

増加せず、また少なくともラット、サルにおいては胎盤をほとんど通過しないとの知見が得られている。また、L-グルタミン酸ナトリウムの大量投与による神経毒性の発現について、感受性は動物種等により異なり、マウスの新生児で最も高いとされている。マウスにおいて神経毒性を発現しない最大の血中濃度は新生児で $100\sim130~\mu mol/dl$ 、離乳期で $380~\mu mol/dl$ 、成熟期で $630~\mu mol/dl$ である。ヒトにおける臨床試験によると、L-グルタミン酸ナトリウム 150~m g/k g 体重を水溶液として単回経口投与しても、血中濃度は前述の神経障害を起こすレベルには達しないとされている。これらの知見を総合し、L-グルタミン酸の血漿中濃度の最高値は食品摂取量に依存し、また乳幼児において L-グルタミン酸ナトリウムは成人と同様に代謝されることから、神経毒性はヒトに経口摂取しても発現しないと評価された。(参照 9、13)

(2) CRS について

十分に管理された二重盲検交叉試験では、CRS と L-グルタミン酸ナトリウムの摂取との間に明確な関係は認められないと結論された。(参照 9、13)

これらを考慮した上で 1987 年に JECFA は、L-グルタミン酸類について、食品中にあらかじめ存在する量に加え、食品添加物として技術的に必要な量を使用する限り、健康に影響を及ぼすことはないとし、前回の上述のL-グルタミン酸及びその塩類に対する ADI($0\sim120~mg/kg$ 体重/日)を、マグネシウム塩も含め「ADI を特定しない (not specified)」に変更している。ただし、L-グルタミン酸ナトリウムを大量に単回摂取した場合、複数回に分けて摂取する場合よりも血漿中濃度が高くなる可能性があるので注意すべきであること、また、食品添加物の一般原則として、乳幼児向け食品には注意深く使用すべきであり、成人の嗜好への配慮を目的とした添加は、乳幼児向け食品に対してはすべきではないことを付記している。(参照 9、48)

2. 米国における評価

FDA の委託を受けた FASEB は 1978 年 (参照 35) 及び 1980 年 (参照 43) に L グルタミン酸とその塩類についての既存の安全性情報を評価し、[1] L グルタミン酸及びその塩酸塩、ナトリウム塩、アンモニウム塩、並びにカリウム塩は現状で通常使用されている量、方法で用いられる限り、乳幼児を含めヒトに対して 有害影響を起こす、あるいは示唆する証拠はないが、[2] 現在と比べた摂取量の 著しい増加による影響は追加データなしには判断できないとし、FDA に報告した。

FDA はこの評価に基づいて 1986 年までに、L-グルタミン酸及びL-グルタミン酸アンモニウムを含む上述の塩類について、適正使用規範(GMP; Good Manufacturing Practice)に従って使用する限りにおいては、GRAS 物質(Substances Generally Recognized as Safe; 一般に安全と認められる物質)と

分類し、食肉製品、食鳥肉製品のフレーバー保持・増強剤としての使用を含め、 食品全般に必要量の使用を認めている。(参照 49~53)

FDAは1980年~1994年にL・グルタミン酸ナトリウム摂取後の副反応に関する多数の報告を受けている。しかしながら、1995年のFASEB報告書においては、L・グルタミン酸ナトリウムを3 g以上、食事なしの条件で経口摂取した後1時間以内にいわゆるCRSの症状を引き起こすヒトがいるとする報告があるものの、通常、L・グルタミン酸ナトリウムを使用した食品の通常の1食分の量(サービング)では、その含有量は0.5g未満であるので、そのような症状は大量あるいは液体で摂取された場合に生じるものではないかとされている。また、ヒトにおいて、L・グルタミン酸ナトリウムの摂取により脳の病変あるいは神経細胞の傷害が惹起されることを示唆する証拠はないとされている。(参照53)

FASEB の報告を受け、米国においては、L-グルタミン酸ナトリウムの摂取と CRS の関係については適切なプロトコールによる二重盲検試験が不足していることなどから二重盲検試験が実施され、2000年、「(6) ヒトにおける知見」に示したように、関連性を否定する結果が報告されている。(参照 36、37、53)

3. EU における評価

欧州食品科学委員会 (SCF) は 1990 年に、L·グルタミン酸及びそのアンモニウム塩、ナトリウム塩、カリウム塩、カルシウム塩並びにマグネシウム塩は SCFが推奨する方法で使用する場合、「ADI を特定しない」としている。なお、乳幼児は成人と同様に L·グルタミン酸類を代謝することが知られていることから、L·グルタミン酸塩の経口摂取の増加により感受性は変化しないとしている。(参照45、53)

EU では、薬味料及び調味料として必要量、その他一般食品には 10 g/kg の範囲内で使用が認められている(E 624)。(参照 54)

Ⅳ. 食品健康影響評価

本物質そのものの体内動態に関する試験はないが、L-グルタミン酸アンモニウムは、胃液中で容易にL-グルタミン酸になると予測されることから、胃を通過した時点で食事由来の遊離 L-グルタミン酸、タンパク質分解物としての L-グルタミン酸、あるいは L-グルタミン酸ナトリウム等の塩類と同一の過程を経て吸収されると考えられる。

よって、L-グルタミン酸アンモニウムについて、提出された毒性試験成績等は必ずしも網羅的なものではないが、既にわが国で使用の認められている L-グルタミン酸及びその塩類の試験成績を用いて総合的に評価することは可能と判断した。

L·グルタミン酸アンモニウムのほか、L·グルタミン酸及びその塩類の安全性試験成績(別紙)を評価した結果、発がん性、生殖発生毒性及び遺伝毒性を有さないと考えられる。また、反復投与毒性試験では、安全性に懸念を生じさせる特段の毒性影響は認められないと考えられた。

なお、わが国において、L-グルタミン酸、同カルシウム塩、同カリウム塩、同マグネシウム塩及び同ナトリウム塩については、食品添加物としての使用経験があり、これまでに安全性に関して特段の問題は指摘されていない。JECFA では、上述の物質及び同アンモニウム塩について、「ADI を特定しない」と評価している。

以上から、L·グルタミン酸アンモニウムが添加物として適切に使用される場合、 安全性に懸念がないと考えられ、ADIを特定する必要はないと評価した。

なお、神経毒性については、マウス及びラットの新生児に高濃度のL-グルタミン酸ナトリウムを投与すると、中枢神経系、特に視床下部に障害が引き起こされることが知られているが、サルを含めた他の動物種の新生児では確認されていない。このため、L-グルタミン酸アンモニウムが添加物として適切に使用される限りにおいて、乳幼児で神経障害が起こるとは考えにくいと判断した。

また、JECFA 等で評価されている L-グルタミン酸ナトリウムと CRS の関連性については、明確な関係は認められないとされており、本調査会としては妥当と判断した。

<別紙:L·グルタミン酸アンモニウム 安全性試験結果>

試験 種類	動物種	試験期間	投与 方法	動物数 /群	被験物質	投与量	試 験 結 果	参照 No
	ラットマウス	単回投与	強制経口		L·グルタミン酸ア ンモニウム ²		ラット雄 LD50:9,100 mg/kg 体重 ラット雌 LD50:8,300 mg/kg 体重 マウス雄 LD50:6,300 mg/kg 体重	14 15
				ŀ	レグルタミン酸力 リウム		マウス雌 LD50:5,900 mg/kg 体重 ラット雄 LD50:8,500 mg/kg 体重 ラット雌 LD50:7,900 mg/kg 体重 マウス雄 LD50:7,700 mg/kg 体重	
			1		レグルタミン酸カ ルシウム		マウス雌 LD50:8,100 mg/kg 体重 ラット雄 LD50:18,200 mg/kg 体重 ラット雌 LD50:14,700 mg/kg 体重 マウス雄 LD50:13,300 mg/kg 体重	
急性毒性					L・グルタミン酸マ グネシウム		マウス雌 LD ₅₀ : 13,800 mg/kg 体重 ラット雄 LD ₅₀ : 18,000 mg/kg 体重 ラット雌 LD ₅₀ : 19,000 mg/kg 体重 マウス雄 LD ₅₀ : 14,900 mg/kg 体重	
性					レグルタミン酸ナ トリウム		マウス雌 LD50: 15,200 mg/kg 体重 ラット雄 LD50: 17,300 mg/kg 体重 ラット雌 LD50: 15,800 mg/kg 体重	
	ラット	単回投与	経口	不明	L·グルタミン酸ナ	不明	マウス雄 LD50: 17,700 mg/kg 体重 マウス雌 LD50: 16,400 mg/kg 体重 ラット LD50: 19,900 mg/kg 体重	9
	ウサギ				トリウム L・グルタミン酸		ラット LD50: 16,600 mg/kg 体重 マウス LD50: 16,200 mg/kg 体重 マウス LD50: 19,200 mg/kg 体重 マウス LD50: 12,961 mg/kg 体重 ウサギ LD50: 2,300 mg/kg 体重	
	マウス	715 日間	混餌	雄各 100 匹	酸、L·及び DL· グルタミン酸ナ		死亡率、血液学的検査、組織学的検査、腫瘍発生率 に有意な差は認められなかった。	9 16
反復投与毒性	ラット	12 週齢から2年間	混餌	雌雄各 35 あるいは 40 匹	トリウム	(0 、 50 、 200	体重、摂餌量、一般行動、生存率、血液学的検査、 臓器重量、組織学的検査に有意な差は認められなかった。また、腫瘍の発生率に群間による差は認められなかった。	9 18
 及び 発がん性	ラット	10 週間	混餌	雄各 10	L·グルタミン酸 ナトリウム		有意な体重増加の抑制、尿の pH の上昇、クレアチニン濃度の減少、ナトリウムイオン濃度の上昇、膀胱上皮の単純性過形成が認められた。	
! 性 	ラット	90 日間	経口	雄各 5 匹		2,000 mg/kg 体重/日	体重、臓器重量及び組織学的検査に変化は認められ なかった。	9

試験 種類	動物種	試験期間	投与 方法	動物数 /群	被験物質	投与量	試 験 結 果	参照 No
	ラット	13 週間	混餌	雄各 10		1		20
反復投与毒性 及	ラット	104 週間	混餌	雌雄各 40 匹	グルタミン酸ナト リウム	0、1、2、4% (0、 500、1,000、 2,000 mg/kg 体重/日 ¹) 対照群:プロピ オン酸ナトリ ウム (2.05%;	4%投与群及びプロピオン酸ナトリウム投与群で、飲水量、尿量及び尿中ナトリウム量が増加傾向を示し、雄では60週以降で体重が低値傾向を示した。 摂餌量、体重、一般状態、血液学的ならびに血液生化学的検査及び血清グルタミン酸含量で差は認められず、また、組織学的に明らかな異常所見は認められていない。 12週及び104週目に腎盂部及び腎臓の皮髄境界部に限局的な石灰沈着が散発的に観察された。	21
及び 発がん性 (続き)	ラット	104 週間	混餌	雌雄各 50 匹 (5 週齡)	L·グルタミン酸 ナトリウム	0、0.6、1.25、 2.5、5%(0、 231、481、975、 1,982(雄)、0、 268 、553、 1,121 、 2,311	2.5%及び 5%投与群:尿検査で pH とナトリウム濃度が雌雄とも高い傾向を示したが、カリウム濃度では雌雄とも低い傾向を示した。5%投与群:体重は雄で 98 週以降に、雌で 90 週以降に有意な増加抑制あるいは抑制傾向を示した。尿検査では、尿量が雄で 1、3、24 ヶ月後に高値を示した。臓器重量では、雌雄ともに腎臓の比重量が、また雄にのみ膀胱の比重量が有意に増加していた。一般状態や摂餌量、生存率、血液学的検査では群間に明らかな差は認められなかった。各臓器の腫瘍発生率については投与群と対照群の間に有意な差は認められなかった。	
	ビーグル大	▶ 104 週間	混餌	雌雄各 5 匹	L·グルタミン酸 ナトリウム	(0、625、 1250、 2,500 mg/kg 体重/日 ¹) 対照群:プロビ		23
生殖	ラット	妊娠末期	混餌			0、2%(0、1,000 mg/kg 体重/日 1)	吸収胚数、生存胎児数、胎児体重及び胎児の内部器官と骨格検査を実施し、差は認められなかった。	24
2 発生毒性	マウス	2 週間混餌 投与後 F ₁ 世代を出産 させ、90日 齢時点でF ₂ 世代を出産		雌雄各 2~5	5Lグルタミン酸 ナトリウム	4,000 、 8,000	親動物及び F ₁ 動物の体重及び摂餌量に差は認められなかった。性周期や妊娠期間、F ₁ 及び F ₂ 世代の 児数、児体重、親動物及び F ₁ 世代の臓器重量や主要 臓器 (脳、眼を含む) の組織学的検査、F ₂ 児の成長 に異常は認められなかった。	25

試験 種類	動物種	I STEX HIRM I	と与 動物数 が法 /群	被験物質	投与量	試 験 結 果	参照 No
	マウス	組織学的検 査は F ₃ 世 代 で 出 生 0、3、14 及 び 21 日に 実施	51 匹	ナトリウム	1,500、6,000 mg/kg 体重/ 日、雌 0、 1,800、7,200 mg/kg 体重/ 日)	母動物の摂餌量は授乳期に著しく増加し、L·グルタミン酸ナトリウムの摂取量は最大で 25,000 mg/kg体重/日まで増加した。 受胎能、妊娠率、生存率、哺育率に投与の影響は認められず、F3世代の離乳までに実施した組織学的検査でも投与に関連した変化は観察されなかった。	9
生殖発生毒性(続き)	マウス	10 日間 不	明 雌 24~30 匹	L·グルタミン酸 ナトリウム		妊娠、着床数、母動物及び胎児の生存率、胎児体重、 その他の指標に明らかな影響は認められなかった。	9
	ウサギ	15 日間 経	.口 9 匹	L·グルタミン酸 ナトリウム	重/日	。 受胎率、同腹児数及び哺育率に投与の影響は認められなかった。投与群の胎児体重は対照群に比べ僅かに低かったが、児の精巣、卵巣及び副腎、母動物の卵巣、副腎、肝臓、腎臓及び脾臓の重量は対照群との間に差は認められなかった。児の外表及び骨格検査においても異常は観察されなかった。また、投与群の流産及び吸収胚の発言頻度は対照群と同様であった。流産胎児に外表及び骨格異常は観察されなかった。流産胎児に外表及び骨格異常は観察されなかった。	
	ラット	妊娠 6~15 経 日	口 雌 25 匹	L・グルタミン酸 カリウム		妊娠、母動物及び胎児の生存率、異常胎児の発現率 に投与の影響は認められなかった。	9
	In vitro	DNA 修復試驗 (Recrassay) (- S9mix)	Bacilus subtilis H17 (rec*) M45 (rec)	L·グルタミン酸 アンモニウム ²	100, 200, 400	陰性。	14
谱		復帰突然変異。 (+/ - S9mix)			10 、 1000 、 20,000 µg/plate	S9mix の有無に関わらず陰性。	14
遺伝毒性		復帰突然変異 (+/ - S9mix)		1	0.145、0.29、 0.58%(w/v)	S9mix の有無に関わらず陰性。	26
		遺伝子変換試 (+/ - S9mix)	験 S. cerevisia D4	e	1.25、2.5、5 % (w/v)	S9mix の有無に関わらず陰性。	26
	In vitro	復帰突然変異 (+/ - S9mix)	大夫 Salmonella typhimurium TA94 TA97 TA98 TA100 TA102	1	最高濃度 2,000 µg/plate	S9mix の有無に関わらず陰性。	27 28

試験 種類	動物種	1 23.65 8864	投与 方法	動物数 /群	被験物質	投与量	試 験 結 果	参照 No
	In vitro	復帰突然変異 (+/ - S9mix)		S. typhimurium TA1535 TA1537 TA1538 TA98 TA100	L·グルタミン酸	1.25 、 2.5 、 5.0% (w/v)	S9mix の有無に関わらず陰性。	29
		遺伝子変換詞 (+/ - S9mix)		S. cerevisiae D4		5.0% (w/v)	S9mix の有無に関わらず陰性。	29
		染色体異常記 (- S9mix)	忒験	CHL		最高濃度 2,000 µg/mL	陰性。	27 30
		復帰突然変異 (+/ - S9mix)		S. typhimurium TA1535 TA1537 TA1538 TA98 TA100	Lグルタミン酸 塩酸塩	0.00625 0.0125 0.025% (w/v)	S9mix の有無に関わらず陰性。	31
		遺伝子変換詞 (+/ - S9mix)		S. cerevisiae		0.7 \ 1.4 \ 2.8 %(w/v)	S9mix の有無に関わらず陰性。	31
	ラット	宿主経由試験			L·グルタミン酸 ナトリウム	0、0.2、5.7 g/kg 体重/日		32
遺伝毒性	マウス	優性致死試験 単回強制投 投与後直ちに	与し、			0、2.7、5.4 g/kg 体重	優性致死の有意な増加は認められず、陰性の結果が 得られている。	33
住 (続き)	In vitro	DNA 修復試 (Rec assay (- S9mix)		Bacilus subtilis H17 (rec ⁺) M45 (rec)	レグルタミン酸 カリウム	100、200、500 mg/mL	陰性。	14
		復帰突然変勢 (+/ - S9mix)		S. typhimurium TA1535 TA1537 TA1538 TA92 TA94 TA98 TA100 E. Coli WP2uvr.4		10 、 1000 、 20000 µg/plate	S9mix の有無に関わらず陰性。	14
		復帰突然変乳 (+/ - S9mix)				0.75, 1.5, 3.0% (w/v)	S9mix の有無に関わらず陰性。	34
		遺伝子変換詞 (+/ - S9mix)		S. cerevisiae D4	g g	1.25 、 2.5 、 5.0 %(w/v)	S9mixの有無に関わらず陰性。	34

試験 種類	動物種	試験期間	投与 方法	動物数 /群	被験物質	投与量	試 験 結 果	参照 No
T.	ラット (幼 若)		混餌		L·グルタミン酸		中等量 (200 mg/日;約1.3 g/kg 体重/日) では学習 を促進させるが、高用量 (400 mg/日;約2.6 g/kg 体重/日) では過度の異常活動や無秩序な行動を惹起 した。	35
般	マウス (新 生児)		経口		L·グルタミン酸 ナトリウム		ED ₅₀ は約500 mg/kg 体重であるが、耐薬性が認め られる最大量は約60 mg/kg 体重とされている。	9
	ヒト				L グルタミン酸 ナトリウム		CRS に対する感受性は女性の方で高いという報告 もあるが、二重盲検法による臨床試験において、CRS との間に有意な相関関係は無いとの成績が得られて いる。	13
		10~12 時間		2名(中華料理を摂取後 12時間に気管支喘息の発 作患者)		2.5 g	最大呼気流速(PEFR)の減少が認められた。	38
					•		喘息の惹起試験が実施されているが、陽性の反応は みられなかった。	
ヒトにおける知見				109名 (グルタミン酸 大り リウムの 根 が かり かった 喘息 かった 喘息 者			喘息の惹起 試験 が実施されているが、陽性の反応は みられなかった。	
知見			経口	不明	L·グルタミン酸 ナトリウム	1.2∼12 g	皮膚の灼熱感(胸部に始まり頸部、上腕部に広がる)、 顔面のこわばり、胸痛の一部が、投与 12~25 分後 に発現した。	ı
			静脈内		L グルタミン酸 ナトリウム		皮膚の灼熱感(胸部に始まり頸部,上腕部に広がる)、 顔面のこわばり、胸痛が、投与 17~20 秒後に発現 した。症状の発現は静脈内投与の場合の方が鋭敏で、 たとえば 21 g の経口摂取で症状の発現がなかった 例において、50 mg の静脈内投与で典型的な症状を 示したとされている。	
	나	不明	静脈内	不明	L-グルタミン酸 ナトリウム	500 mg	胸痛を示した例について心電図の検査を実施したが、異常所見はなかった。	

¹ JECFA で用いられている換算値を用いて摂取量を推定(参照 17)

種	最終体重 (kg)	摂餌量 (g/動物/日)	摂餌量 (g/kg 体重/日)	
マウス	0.02	3	150	
ラット	0.4	20	50	
イヌ	10	250	25	

² 投与物質に網掛け () がされているものは、今回の評価品目である。

<参照>

- 1 Monoammonium L-Glutamate. Prepared at the 31st JECFA (1987), published in FNP38 (1988) and in FNP 52 (1992). INS No.624.
- 2 European Communities. Commission Directive 2001/30/EC of 2 May 2001 amending Directive 96/77/EC laying down specific purity criteria on food additives other than colours and sweeteners. OJL 146. (2001): 1-2, 14.
- 3 Institute of Medicine of the National Academies. Monoammonium L-Glutamate. Food Chemical Codex Fifth Edition. (2004): 292-293.
- 4 味の素㈱ 品質保証部長 木村毅. グルタミン酸アンモニウム塩の呈味特性. (2005 年 12 月 5 日付 報告書)
- 5 味の素㈱ 品質保証部長 木村毅. グルタミン酸アンモニウム塩の溶解度の pH 依存性. (2005年12月5日付 報告書)
- 6 食品添加物公定書解説書(第7版). 廣川書店 (1999): D436-451.
- 7 鳥居邦夫、三村亨. L-グルタミン酸塩類のラットにおける吸収と排泄について. 医薬品研究 (1990)21: 242-256.
- 8 栗原堅三、小野武年、渡辺明治、林裕造. グルタミン酸の科学-5章 体内のグルタミン酸-. グルタミン酸の科学-うま味から神経伝達まで. (2000): 113-162.
- 9 The 31st Meeting of the JECFA. Toxicological evaluation of certain food additives. WHO Food Additives Series 22. (1987):97-182.
- 10 Noorlander CW, Graan PNE de, Nikkels PGJ, Sachrama LH, Visser GHA. Distribution of Glutamate Transporters in the Human Placenta. Placenta. (2004)25: 489-495.
- 11 Kanai Y, Hediger MA. The glutamate/neutral amino acid transporter family SLC1:molecular, physiological and pharmacological aspects. Pflugers Arch. (2004)447: 469-479.
- 12 Bizzi A, Veneroni E, Salmona M, Garattini S. Kinetics of Monosodium Glutamate in relation to its neurotoxicity. Toxicol. Lett. (1977)1: 123-130.
- 13 栗原堅三、小野武年、渡辺明治、林裕造. グルタミン酸の科学-6 章 グルタミン 酸の安全性-. グルタミン酸の科学-うま味から神経伝達まで. (2000): 163-189.
- 14 高崎豊、成井喜久子、塩谷茂. L·グルタミン酸塩類の毒性 4種の L·グルタミン酸 塩類のマウス, ラットにおける急性毒性及び微生物による突然変異について. 医薬 品研究. (1990)21: 257·264.
- 15 Moriyuki H, Ichimura M. Acute toxicity of monosodium L-glutamate in mice and rats. Oyo Yakuri. (1978)15: 433-436.
- 16 Ebert AG. The dietary administration of monosodium glutamate or glutamic acid to C-57 black mice for two years. Toxicol. Lett. (1979)1: 65-70.
- 17 Principles for the safety assessment of food additives and contaminants in food. World Health Organization, International Program on Chemical Safety in

- Cooperation with the Joint FAO/WHO Expert Committee on Food Additives, Geneva, Environmental Health Criteria 70 (1987).
- 18 Ebert AG. The dietary administration of L-monosodium glutamate, D L-monosodium glutamate, and L-glutamic acid to rats. Toxicol. Lett. (1979)3: 71-78.
- 19 Cohen SM, Cano M, Garland EM, John MS, Arnold LL. Urinary and urothelial effects of sodium salts in male rats. Carcinogenesis. (1995)16: 343-348.
- 20 DeGroot AP, Feron VJ, Immel HR. Induction of Hyperplasia in the Bladder Epithelium of Rats by a Dietary Excess of Acid or Base: Implications for Toxicity / Carcinogenicity Testing. Fd Chem. Toxic. (1988) 25: 425-434
- 21 Owen G, Cherry CP, Prentice DE, Worden AN. The feeding of diets containing up to 4% monosodium glutamate to rats for 2 years. Toxicol. Lett. (1978)1: 221-226.
- 22 Shibata MA, Tanaka H, Kawabe M, Sano M, Hagiwara A, Shirai T. Lack of carcinogenicity of monosodium L-glutamate in Fischer 344 rats. Food chem. Toxicol. (1995)33: 383-391.
- 23 Owen G, Cherry CP, Prentice DE, Worden AN. The feeding of diets containing up to 10% monosodium glutamate to beagle dogs for 2 years. Toxicol. Lett. (1978)1: 217-219.
- 24 McColl JD, Globus M, Robinson S. An attempted reversal of thalidomide embryopathy in the rat by glutamine. Can. J. physiol. Pharmacol. (1964)43: 69-73.
- 25 Yonetani S, Ishii H, Kirimura J. Effect of dietary administration of monosodium L-glutamate on growth and reproductive functions in mice. Oyo Yakuri. (1979)17: 143-152.
- 26 Litton Bionetics, Inc. Mutagenic evaluation of Compound FDA 75·11. 007558·63·6, Monoammonium Glutamate, FCC. National Technical Information Service (NTIS) PB-254 512. (1975).
- 27 石館基、祖父尼俊雄、吉川国衛. 食品添加物の変異原性試験成績 (その 5). トキシコロジ・フォーラム. (1985)7: 634·643.
- 28 石館基、能美健彦、松井道子. 微生物を用いる変異原性試験データ. 微生物を用い る変異原性試験データ集. (1991).
- 29 Litton Bionetics, Inc. Mutagenic Evaluation of compound. FDA 75-65. L-Glutamic Acid, FCC. National Technical Information Service (NTIS) PB-266 889.(1977).
- 30 祖父尼俊雄、林真、松岡厚子. 染色体異常試験データ. 染色体異常試験データ集 改訂 1998 年版.
- 31 Litton Bionetics, Inc. Mutagenic evaluation of compound. FDA 75-59.

- L-Glutamic Acid, HCL. National Technical Information Service (NTIS) PB-266 892. (1977).
- 32 Industrial Bio-test Laboratories, Inc. Host-mediated assay for detection of mutations induced by ac'cent brand Monosodium-L-glutamate. IBT No. 632-03039. (1973).
- 33 Industrial Bio-test Laboratories, Inc. Mutagenic study with ac'cent brand Monosodium-L-glutamate in albino mice. IBT No. 632-03040. (1973).
- 34 Litton Bionetics, Inc. Mutagenic evaluation of compound FDA 73-58. 000997-42-2, Monopotassium Glutamate. National Technical Information Service (NTIS) PB-254 511. (1975).
- 35 Life Sciences Research Office Federation of American Societies for Experimental Biology. Evaluation of the health aspects of certain Glutamates as food ingredients. Prepared for FDA. SCOGS-37a. Contract No. FDA 223-75-2004.(1978).
- 36 Geha RS, Beiser A, Ren C, Patterson R, Greenberger PA, Grammer LC, Ditto AM, Harris KE, Shaughnessy MA, Yarnold PR, Corren J, Saxon A. Review of alleged reaction to monosodium glutamate and outcome of a multicenter double-blind placebo-controlled study. J. Nutr. (2000) 130:1058-1062.
- 37 Geha RS, Beiser A, Ren C, Patterson R, Greenberger PA, Grammer LC et al. Multicenter, double-blind, placebo-controlled, multiple-challenge evaluation of reported reactions to monosodium glutamate. J. Allergy Clin. Immunol. (2000)106: 973-980.
- 38 Stevenson DD. Monosodium glutamate and asthma. J. Nutr. (2000)130: 1067-1073.
- 39 平成 13 年食品添加物研究会編. あなたが食べている食品添加物 総合版(本編版).
- 40 Ishiwata H, Yamada T, Yoshiike N, Nishijima M, Kawamoto A, Uyama,Y. Daily Intake of Food Additives in Japan in Five Age Groups Estimated by the Market Basket Method. Eur Food Res Technol. (2002) 215:367-374.
- 41 日本食品添加物協会「生産量統計を基にした食品添加物の摂取量の推定」研究 グループ. 生産量統計を基にした食品添加物の摂取量の推定 その1指定添加物 品目(第7回最終報告) 第11章 調味料. 平成16年度厚生労働科学研究費補助 金(食品の安全性高度化推進事業)平成17年3月31日;1054·1061.
- 42 厚生労働省/健康・栄養情報研究会編. 平成 16 年 国民健康・栄養調査報告/栄養素等摂取量. 平成 16 年国民健康・栄養調査報告(第一出版). (2006)
- 43 Life Sciences Research Office Federation of American Societies for Experimental Biology. Evaluation of the health aspects of certain Glutamates as food ingredients supplemental review and evaluation. SCOGS-37a-Suppl. Prepared for FDA. Contract No. FDA 223-75-2004. (1980).

- 44 Poundage and Technical Effects Update of Substances Added to Food. National Technical Information Service (NTIS), Prepared for Food and Drug Administration. PB91-127266. (1987): 405.
- 45 EU Commission. Report from the Commission on dietary food additive intake in the European Union.
 - http://ec.europa.eu/food/food/chemicalsafety/additives/flav15_en.pdf.
- 46 Anderson SA, Raiten DJ. Life Sciences Research Office Federation of American Societies for Experimental Biology. Safety of amino acids used as dietary supplements. Prepared for FDA. FDA Contract No. 223-88-2124, Task Order No.8. (1992): 37-38, 154-166.
- 47 Seventeenth Report of the JECFA. Toxicological evaluation of certain food additives with a review of general principles and of specifications. WHO Technical Report Series No.539, FAO Nutrition Meetings Report Series No.53. (1974).
- 48 Thirty-first Report of the JECFA. Evaluation of certain food additives and contaminants. WHO Technical Report Series 759. (1987).
- 49 Food and Drug Administration, § 182.1 Substances that are Generally Recognized as Safe (Glutamate 関連), 21CFRCh.1 (4-1-07 Edition): 468, 474-475.
- 50 Food Safety and Inspection Service, USDA. 9CFR. § 318.7 Approval of substances for use in the preparation of products. 9CFR Ch.III (1-1-99Edition)
- 51 Food Safety and Inspection Service, USDA. 9CFR. § 381.146 Sampling at official establishments. 9CFR Ch.III (1-1-99Edition)
- 52 連邦農務省 (USDA)食品安全検査局 井川三郎(訳) 食肉および鳥肉製品中の グルタミン酸-アンモニウム (Federal Register 50 (237) 50282-3 (Dec. 10, 1985)) . JAFAN. (1986)57:7-10.
- 53 FDA and Monosodium Glutamate(MSG). FDA Backgrounder. (1995) http://www.cfsan.fda.gov/~lrd/msg.html
- 54 Office for Official Publications of the EC. European Parliament and council directive No 95/2/EC of 20 February 1995 on Food Additives other than Colours and Sweeteners . CONSLEG: 1995L0002-17/07/2003. 1-7, 30, 38.