to make them less stringent may have serious consequences for the safety of the final product. Parts A-D are divided into sections, each of which constitutes a recommendation. The parts of each section printed in normal type have been written in the form of requirements, so that, if a health administration so desires, they may be adopted as they stand as definitive national requirements. The parts of each section printed in small type are comments or recommendations for guidance. Should individual countries wish to adopt these Requirements as the basis for their national regulations concerning blood products and related substances, it is recommended that modifications be made only on condition that the modified requirements ensure at least an equal degree of safety and potency of the products. It is desirable that the World Health Organization should be informed of any such changes. Increasing demand for blood products is resulting in the extensive movement of such products from one country to another. Internationally accepted requirements are therefore necessary so that countries without any regulations on blood products and related substances may refer to them when importing such products. # International Biological Standards and Reference Reagents Rapid technological developments in the measurement of the biological activity of blood products and related substances require the establishment of international biological reference materials. The first two such materials (for anti-A and anti-B blood-typing sera) were established in 1950, and further reference materials have been established since. A number of materials are currently under investigation for use in the preparation of new standards. The activity of blood products must be expressed in International Units where an International Standard exists. WHO publishes a list of such standards (revised from time to time and most recently in 1990) under the title Biological substances: International Standards and Reference Reagents. # **Definitions** The following definitions are intended for use in this document and are not necessarily valid for other purposes. Blood collection: a procedure whereby a single donation of blood is collected in an anticoagulant and/or stabilizing solution. Processing: any procedure that takes place after the blood is collected. Plasmapheresis, apheresis and cytapheresis: procedures whereby whole blood is separated by physical means into components and one or more of them returned to the donor. Closed blood-collection and processing system: a system for collecting and processing blood in containers that have been connected together by the manufacturer before sterilization, so that there is no possibility of bacterial or viral contamination from outside after collection of blood from the donor. Donor: a person who gives blood or one of its components. # Single-donor materials Whole blood (sometimes referred to as "blood"): blood collected in an anticoagulant solution with or without the addition of nutrients such as glucose or adenine. Whole blood is collected in units of 450 ml. *Blood component:* any part of blood separated from the rest by means of physical procedures. *Plasma*: the liquid portion remaining after separation of the cellular elements from blood collected in a receptacle containing an anticoagulant, or separated by continuous filtration or centrifugation of anticoagulated blood in an apheresis procedure. *Plasma*, frozen: a plasma separated more than 8 h after collection of the blood and stored below -20 °C. Plasma, fresh-frozen: a plasma separated within 8 h of donation, frozen rapidly and stored below -20 °C (and preferably below -30 °C). *Plasma*, *platelet-rich*: a plasma containing at least 70% of the platelets of the original whole blood. *Plasma*, *freeze-dried*: any one of the above forms of plasma that has been freeze-dried for preservation. Plasma, recovered: plasma recovered from a whole blood donation. Cryoprecipitated factor VIII: a crude preparation containing factor VIII that is obtained from single units (or small pools) of plasma derived either from whole blood or by plasmapheresis, by means of a process involving freezing, thawing and precipitation. Serum: the liquid part of coagulated blood or plasma. Red cells: whole blood from which most of the plasma has been removed and having an erythrocyte volume fraction greater than 0.7. Red cells suspended in additive solution: red cells to which a preservative solution, for example containing adenine, glucose and mannitol, is added to permit storage for longer periods; the resulting suspension has an erythrocyte volume fraction of approximately 0.6-0.7. Red cells, washed: red cells from which most of the plasma has been removed by one or more stages of washing with an isotonic solution. Red cells, leukocyte-depleted: a unit of a red-cell preparation containing fewer than 1.2×10^9 leukocytes. Red cells, leukocyte-poor: a unit of a red-cell preparation containing fewer than 5×10^6 leukocytes. Red cells, frozen: red cells that have been stored continuously at -65 °C or below, and to which a cryoprotective agent such as glycerol has been added before freezing. Red cells, deglycerolized: frozen red cells that have been thawed and from which glycerol has been removed by washing. Platelets: platelets obtained either by separation of whole blood, buffy coat or platelet-rich plasma or by apheresis and suspended in a small volume of plasma from the same donation. Leukocytes: leukocytes obtained either by the separation of whole blood or by apheresis and suspended in a small volume of plasma from the same donation. ### Large-pool products Bulk material: plasma, powder, paste or liquid material prepared by the fractionation of pooled plasma. Final bulk: a sterile solution prepared from bulk material and bearing the corresponding batch number. It is used to fill the final containers. In some countries, the final bulk is distributed into containers through a sterilizing filter. If the total final bulk is not distributed into containers in one session, each of the filling lots is given a sub-batch number. Filling lot (final lot): a collection of sealed final containers that are homogeneous with respect to composition and the risk of contamination during filling and (where appropriate) drying or other further processing such as heat treatment. A filling lot must therefore have been filled and (where appropriate) dried in one working session. # Part A. Requirements for the collection of source materials #### Premises The premises shall be of suitable size, construction and location to facilitate their proper operation, cleaning and maintenance in accordance with accepted rules of hygiene. They shall comply with the requirements of Good Manufacturing Practices for Pharmaceutical (7) and Biological (8) Products and in addition provide adequate space, lighting and ventilation for the following activities where applicable: - The medical examination of individuals in private to determine their fitness as donors of blood and/or blood components and to provide an opportunity for the confidential self-exclusion of unsuitable potential donors. - The withdrawal of blood from donors and, where applicable, the re-infusion of blood components with minimum risk of contamination and errors. - The care of donors, including the treatment of those who suffer adverse reactions. - The storage of whole blood and blood components in quarantine pending completion of processing and testing. - The laboratory testing of blood and blood components. - The processing and distribution of whole blood and blood components in a manner that prevents contamination and loss of potency. - The performance of all steps in apheresis procedures, if applicable. - The performance of labelling, packaging and other finishing operations in a manner that prevents errors. - The storage of equipment. - The separate storage of quarantined and finished products. - The documentation, recording and storage of data on the donor, the donated blood and the ultimate recipient. Mobile teams can be used for the collection of blood. Although the premises used by such teams may not comply with the more stringent requirements for centres built specially for the purpose, they must be adequate to ensure the safety of the donor, the collected blood or blood components and the staff participating in blood collection. The safety of the subsequent users of the premises should also not be forgotten. ## 2. Equipment The equipment used in the collection, processing, storage and distribution of blood and blood components shall be calibrated, tested and validated before initial use, and shall be kept clean and maintained and checked regularly. The requirements of Good Manufacturing Practices for Pharmaceutical (7) and Biological (8) Products shall apply in every particular. The equipment employed to sterilize materials used in the collection of blood or blood components or for the disposal of contaminated products shall ensure that contaminating microorganisms are destroyed and shall be validated for this purpose. The effectiveness of the sterilization procedure shall be not less than that achieved by a temperature of 121.5 °C maintained for 20 min by means of saturated steam at a pressure of 103 kPa (1.05 kgf/cm² or 15 lbf/in²) or by a temperature of 170 °C maintained for 2 h with dry heat. All contaminated material should be made safe before disposal. Disposal should comply with the relevant local laws. Tests for sterility are given in the revised Requirements for Biological Substances No. 6 (General Requirements for the Sterility of Biological Substances) (9, pp. 40–61). #### Personnel An organization for the collection of blood or blood components shall be under the direction of a designated and appropriately qualified person who shall be responsible for ensuring that all operations are carried out properly and competently. The director shall have adequate knowledge and experience of the scientific and medical principles involved in the procurement of blood and, if applicable, the separation of blood components and the collection of such components by apheresis. The director shall be responsible for ensuring that employees are adequately trained and acquire practical experience and that they are aware of the application of accepted good practice to their respective functions. The director should have the authority to enforce or to delegate the enforcement of discipline among relevant employees. The persons responsible for the collection of the blood and blood components shall be supervised by licensed physicians who shall be responsible for all medical decisions, for review of the procedures manual and for the quality-control programme, including techniques, equipment, procedures and staff. The personnel responsible for the processing, storage, distribution and quality control of blood, blood components and plasma shall be adequate in number and each member of the personnel shall have a suitable educational background and training or experience that will ensure competent performance of assigned functions so that the final product has the required safety, purity, potency and efficacy. #### 4. Donors #### 4.1 Donor selection The provision of blood, blood components and plasma derivatives from voluntary, non-remunerated donors should be the aim of all countries. In selecting individuals for blood donation, it is most important to determine whether the person is in good health, in order to protect the donor against damage to his or her own health and to protect the recipient against exposure to diseases or to medicinal products from the blood or blood products. It should be recognized that the donor selection process contributes significantly to the safety of blood products derived from large plasma pools. The following provisions apply to donations of blood or blood components not intended for autologous use. The health of a donor shall be determined by a licensed physician or a person under the direct supervision of a licensed physician, and the donor shall be free from any disease transmissible by blood transfusion in so far as can be determined by history-taking and examination (see section 4.3). Donors shall be healthy persons of either sex between the ages of 18 and 65 years. In some countries, there is no upper limit to the age of the donor. With parental consent the minimum age may be lowered to 16 years. Red blood cells from donors with glucose-6-phosphate dehydrogenase deficiency, sickle-cell trait or other inherited erythrocyte abnormalities may give rise to transfusion reactions under certain circumstances. Decisions regarding the suitability of such donors should be made by the national control authority. A donor should be considered for plasmapheresis only where the procedures involved result in products or services shown to serve accepted medical purposes, including prophylaxis, therapy and diagnosis, as verified by valid scientific evidence. All donors should be certified as acceptable, at the time of each plasmapheresis procedure, by a registered physician or by trained personnel under the direct supervision of the physician. Those eligible for apheresis donation include: (a) healthy persons who fulfil the general criteria for blood donors; (b) persons with antibody levels that have been increased, either naturally or by immunization; (c) subject to (a) above, persons with plasma that is of value for diagnostic or reference purposes; and (d) persons whose blood may be used in the preparation of certain vaccines. When a potential donor does not fulfil the general criteria for blood donation, the acceptance of her or him as a donor for a specific component of blood should be at the discretion of the responsible physician. Where appropriate, the physician should have access to an ethical committee. Donor education and selection programmes are intended to prevent potentially infectious units of blood and plasma from being collected. It is essential that such programmes are comprehensible and readily accessible to all potential donors. To reduce the likelihood of transmitting infections, all potential donors should be informed of factors in their history or behaviour that may increase their risk of being infected. The national control authority must determine the appropriate exclusion criteria for the country concerned. Persons in the following categories shall be excluded from acting as donors: - those with clinical or laboratory evidence of infectious disease, e.g. infection with hepatitis viruses, HIV-1 or HIV-2; - past or present intravenous drug abusers; - men who have had a sexual relationship with another man; - men and women who have engaged in prostitution; - those with haemophilia or other clotting-factor defects who have received clotting-factor preparations; - sexual partners of any of the above. In some countries, the sexual partners of those at risk of transmitting infections are excluded from acting as donors for only one year. Persons who have received blood transfusions should be excluded from acting as donors for at least one year. Donors should be made aware before donating blood that it will be tested for the presence of serological markers of infection. It is advisable that the right to test donations and the legal implications of testing donations should be clarified by the appropriate authority. ### 4.2 Donation frequency and volume #### 4.2.1 Whole blood The frequency of whole-blood donations shall not exceed once every two months, with a maximum volume in any consecutive 12-month period of 3 l. A standard donation should not be collected from persons weighing less than 50 kg. A standard donation is 450 ml; an optimum blood/anticoagulant ratio is 7 to 1. The frequency of donation may have to be modified on an individual basis. In general, premenopausal women should not donate blood as frequently as men. #### 4.2.2 Plasma Plasma donors can be divided into three groups: those who donate at a frequency comparable to that allowed for whole-blood donations; those who donate two to three times as frequently as whole-blood donors; and those who donate at a maximum of twice a week. The first group shall be accepted on the basis of the general criteria for blood donors. The maximum volume of plasma that may be removed from a donor during one plasmapheresis procedure shall be determined by the national health authority, and shall depend on whether the plasma is obtained by manual or automated plasmapheresis. In some countries, the volume of plasma collected during a manual procedure is the quantity obtained from 1.0–1.2 I of whole blood. The volume of plasma collected during an automated procedure depends on the equipment used. It is difficult to specify the maximum volumes of plasma that can be safely collected from donors until more definitive data are available on the effects of plasmapheresis on donors. The limits imposed in different countries vary, and depend on the nutritional status of the donor. If a plasma donor donates a unit of whole blood or if the red blood cells are not returned in an apheresis procedure, the next donation shall be deferred by eight weeks unless special circumstances warrant approval by the responsible physician of plasmapheresis at an earlier date. In general, plasma collected by therapeutic plasmapheresis shall not be used for fractionation. #### 4.3 Medical history #### 4.3.1 General Before each donation, questions shall be asked so as to ensure that the donor is in normal health and has not suffered, or is not suffering, from any serious illness. A donor who appears to be suffering from symptoms of acute or chronic disease or who is receiving oral or parenteral medication, with the exception of vitamins, postmenopausal hormone therapy or oral contraceptives, shall not be accepted unless approved by a physician. A donor who appears to be under the influence of any drug including alcohol or who does not appear to be providing reliable answers to medical history questions shall not be accepted. #### 4.3.2 Infectious diseases Potential donors with a history that places them at increased risk of transmitting infection shall not donate blood or plasma for an appropriate time period. A donor shall be permanently excluded if one of his or her previous blood donations was believed to be responsible for transmitting disease. In most countries, questions concerning the signs and symptoms of HIV infection will be part of the routine assessment of medical history and appropriate monitoring for HIV, as defined by the national control authority, will be included. As a result of this assessment, a potential donor may be disqualified. Donors shall not have a history of: positive laboratory test results for hepatitis or corresponding symptoms and signs; close contact with an individual with hepatitis within the previous year; receipt within the previous year of human blood or any blood component or fraction that might be a source of transmission of infectious agents; or tattooing, scarification or ear piercing (unless performed under sterile conditions) within the previous year. Acupuncture within the previous year may also present a risk if not carried out under sterile conditions. In some countries, potential donors with a history of viral hepatitis or of a positive test for hepatitis B surface antigen (HBsAg) or antibodies to hepatitis C virus (anti-HCV) are permanently excluded. In others, such donors are accepted providing that recovery occurred more than one year previously and that the reaction for HBsAg and anti-HCV in a sensitive test is negative. The requirements concerning viral hepatitis may be varied, at the discretion of the national control authority, according to the local epidemiological circumstances. The collection both of single-donor products (whole blood and its components) and of plasma for pooling for the manufacture of plasma fractions capable of transmitting hepatitis or HIV should be avoided if a group of potential donors shows a prevalence of acute or chronic hepatitis B, hepatitis C or HIV infection higher than that found in the general donor population. Specific approval may be given by national control authorities for the use of donations from such populations to provide plasma for the manufacture of hepatitis B vaccine or hepatitis B immunoglobulin. In areas with a low incidence of transfusion-transmitted disease, whole blood or blood components should not be used for transfusion if obtained from source material collected in an area where there is a high incidence of blood-borne infectious disease. Blood and plasma shall be tested for the presence of HBsAg, anti-HIV and anti-HCV by the methods described in Part B, section 7.2; the tests used should be approved by the national control authority or other appropriate authority. Anyone whose blood has been shown to be reactive for infectious disease markers by approved screening tests shall be excluded as a donor. Selection as a donor may later be permitted if sufficient data are available from tests approved by the national control authority to indicate that the original results were non-specific. National health authorities shall develop policies designed to prevent the transmission of infectious diseases based on the prevalence of these diseases in the donor population and the susceptibility of recipients to them. In countries where malaria is not endemic, donors of cellular blood products should have a negative history of malaria exposure during the previous six months and a negative history of clinical malaria, or a history of malaria prophylaxis if they have resided in, or visited, an endemic area within the three years preceding the donation. Such restrictions may be less important in countries where the prevalence of endemic malaria is high among both donors and recipients, except when blood products are required by visitors from non-endemic areas. Malaria history is not pertinent to plasma donation for source material that will be fractionated. Particular attention should be paid to skin decontamination procedures before blood collection. Many parasitic, bacterial and viral diseases, including trypanosomiasis, toxoplasmosis, syphilis and brucellosis, can be transmitted by blood. Precautions shoud be taken to avoid blood collection during the viraemic phase of viral diseases like measles and rubella. Potential donors who have lived in or recently travelled to areas where human T-cell lymphotropic virus infections and haemorrhagic fever are endemic should be investigated for evidence of such infections. Anyone who has received pituitary hormones of human origin should be permanently excluded as a donor because of possible infection with the agent causing Creutzfeldt-Jakob disease, although transmission of this agent through blood products has not been proved. 4.3.3 Minor surgery Donors shall not have undergone tooth extraction or other minor surgery during a period of 72 h before donation. 4.3.4 Pregnancy and lactation Pregnant women shall be excluded from blood donation. In general, mothers shall also be excluded during lactation and for at least six months after full-term delivery. The interval before blood donation is permissible after pregnancy may be shorter in some cases, e.g. six weeks after an abortion during the first trimester. In some countries, donors are accepted when pregnant or during the period of lactation if their blood contains certain blood-group antibodies or is needed for autologous transfusion. The volume to be taken should be determined by the physician responsible. 4.3.5 Prophylactic immunization Symptom-free donors who have recently been immunized may be accepted with the following exceptions: - Those receiving attenuated vaccines for measles, mumps, yellow fever or poliomyelitis shall be excluded until two weeks after the last immunization or injection. - Those receiving attenuated rubella (German measles) vaccine shall be excluded until four weeks after the last injection. - Those receiving rabies vaccine for post-exposure treatment shall be excluded until one year after the last injection. - Those receiving passive immunization with animal serum products shall be excluded until four weeks after the last injection. - Those receiving hepatitis B vaccine need not be excluded unless the vaccine is being given because of exposure to a specific risk, in which case the donor shall be disqualified for at least 12 months after the last such exposure. If hepatitis B immunoglobulin has been administered, the period of deferral shall be at least 12 months because disease onset may be delayed. # 4.4 Physical examination As determined by the national control authority, physical examination of donors may include measurement of weight, blood pressure, pulse rate and temperature. If these are measured and the results lie outside the ranges recommended below, the donor concerned shall be accepted only if approved by the licensed physician in charge. - Blood pressure: systolic blood pressure between 12 and 24 kPa (90 and 180 mmHg); diastolic blood pressure between 6.67 and 13.3 kPa (50 and 100 mmHg). - Pulse: between 50 and 110 beats per minute and regular. Lower values may be accepted in healthy athletes with endurance training. • Temperature: oral temperature not exceeding 37.5 °C. Weight: donors weighing less than 50 kg may donate a volume of blood proportionally less than 450 ml in an appropriate volume of anticoagulant, provided that all other donor requirements are met. Donors shall be free from any infectious skin disease at the venepuncture site and of skin punctures or scars indicative of abuse of intravenous drugs. # 4.5 Additional requirements applicable to donors for plasmapheresis All phases of apheresis, including explaining to donors what is involved in the process and obtaining their informed consent, should be performed under the direct supervision of a licensed physician or by trained personnel reporting to such a physician. ### 4.5.1 First-time plasma donors When prospective plasma donors present themselves to a centre for the first time, initial screening shall begin only after the procedure of plasmapheresis has been explained and the donor has given consent. The following information shall be permanently recorded: - Personal information and identification. If the donor is to participate in an ongoing programme, an effective means of identification is especially important. The use of identity numbers, photographs or other equally effective measures should be considered. - A preliminary medical history as required for blood donors, covering infectious diseases and the donor's general state of health. If there are no contraindications to plasmapheresis, preliminary laboratory tests shall be carried out, namely reading of the erythrocyte volume fraction or haemoglobin concentration, determination of total serum protein and screening for protein and sugar in the urine. The haemoglobin concentration or erythrocyte volume fraction of the donor's blood shall be within normal limits, as defined by the national control authority or the national blood transfusion authority. Many countries specify minimum haemoglobin concentrations of 125g/l for women and 135g/l for men, or, for microhaematocrit determinations, minimum erythrocyte volume fractions of 0.38 for women and 0.41 for men. If normal values are also obtained in the other laboratory tests, evaluation of the potential donor by the physician begins. In some countries, specially trained non-physicians are permitted to conduct these routine examinations under the supervision of a physician. Donors participating in a programme in which plasmapheresis is more frequent than is blood donation for those eligible for whole-blood collection shall be examined by a licensed physician on the day of the first donation, or not more than one week before that donation. This examination shall include measurement of temperature and blood pressure, auscultation of the heart and lungs, palpation of the abdomen, assessment of neurological signs, urine analysis and blood sampling for tests required by the national control authority. Liver function tests (e.g. for alanine aminotransferase), tests for HBsAg, anti-HIV and anti-HCV, and quantification of plasma proteins by electrophoresis or another suitable method shall also be included. The physician shall obtain informed consent after explaining the procedure of plasmapheresis and describing the hazards and adverse reactions that may occur. At this stage, donors shall be given an opportunity to refuse participation. If they consent, it must be on the condition that their legal rights to recover damages are not waived. In some countries, the first plasmapheresis procedure may be performed before the results are available for the liver function tests, the serological tests for syphilis (if required by the national control authority) and the tests for HBsAg, anti-HCV and anti-HIV. The results of the tests for quantifying plasma proteins should be reviewed by the physician before subsequent plasma-pheresis procedures. # 4.5.2 Donors who have undergone plasmapheresis previously in the same programme For donors who have already taken part in a plasmapheresis programme: The receptionist shall note the date of the last donation (at least two days must have elapsed since that time). No more than two donations shall be permitted within a seven-day period. • The medical history and weight of the donor shall be recorded; blood pressure, temperature, pulse rate and haemoglobin concentration shall be measured by trained personnel. On the day of each donation, in addition to meeting the general requirements for donors, plasma donors shall be shown to have a total serum protein concentration of not less than 60 g/l. The medical evaluation of plasma donors shall be repeated at regular intervals, as specified by the national control authority, and tests carried out as specified in section 4.5.3. Whenever the result of a laboratory test is found to be outside the established normal limits or a donor exhibits any important abnormalities of history or on physical examination, the donor shall be excluded from the programme. The donor shall not be readmitted to the programme until the results of relevant tests have returned to normal and the responsible physician has given approval in writing. It is the responsibility of national health authorities to define normal ranges and standard deviations of test results on the basis of data from a sufficiently large sample of healthy individuals not undergoing plasmapheresis. In the case of hepatitis C, the results of liver function tests frequently return to normal before rising again. Test results obtained over a period of adequate length must therefore be evaluated by the physician before the donor can be readmitted to the programme. #### 4.5.3 Tests for plasma donors The following tests shall be performed at each donation: - Measurement of haemoglobin concentration or erythrocyte volume fraction. - Determination of total serum protein concentration, which shall be at least 60 g/l. - An approved test for HBsAg, which shall be negative. - An approved test for anti-HIV, which shall be negative. - An approved test for anti-HCV, which shall be negative. The following tests shall be performed initially and then every four months or after every 10 donations, whichever time interval is longer: - If required by the national control authority, a serological test for syphilis, which shall be negative. - Urine analysis for glucose and protein, which shall be negative. - Serum protein electrophoresis: this shall be normal (unusual changes in a donor's results may be more significant than absolute values). The albumin and globulin concentrations may be calculated from the known total protein value, and shall be: albumin, minimum 35 g/l; IgM, minimum 0.5 g/l; IgG, between 5 and 20 g/l. - Liver function tests. When determination of serum alanine aminotransferase is required, the enzyme concentration measured photometrically using approved reagents shall be no more than two standard deviations above an established normal mean # 4.6 Donors for platelet and leukocyte apheresis In general, platelet and leukocyte donors shall meet the general criteria for donors and the specific criteria for plasma donors (sections 4.1-4.5). In addition, platelet donors should not have taken aspirin or other platelet-active drugs for at least 72 h before donation. The requirements to be satisfied in the performance of plateletpheresis and leukapheresis in order to ensure that there is no danger to donors and that the products obtained are of satisfactory quality are under active investigation in many countries. The following recommendations may be useful as guidance. On the day of each donation, donors for plateletpheresis should have an absolute platelet number concentration ("count") of not less than 200×10^9 /l and donors for leukapheresis should have an absolute granulocyte number concentration of not less than 3×10^9 /l. Both types of donor should have a normal differential leukocyte count and haemoglobin level. Although levels of circulating platelets and leukocytes recover promptly in donors, data are not at present available from which the maximum numbers of platelets and leukocytes that can be safely collected from donors can be defined. The long-term effects of the repeated removal of cellular elements are not known Leukapheresis may entail the administration of drugs to donors and their exposure to colloidal agents to enhance the yield of granulocytes. Appropriate precautions should be taken to protect donors, such as investigation for latent diabetes by means of a glucose tolerance test if a donor is to be given corticosteroids. Leukapheresis should be performed as part of the treatment of a patient with chronic myeloid leukaemia only if approved by the patient's attending physician. It is inadvisable to use the leukocytes from such patients. # 4.7 Donor immunization and plasma for special purposes 4.7.1 Plasmapheresis in donors with naturally acquired antibodies and other types of medically useful plasma Plasma may be collected by plasmapheresis from donors who have acquired immunity through natural infection or through active immunization with approved vaccines for their own protection, and from donors with plasma useful for diagnostic purposes as a result of acquired or congenital underlying conditions. Donors with medically useful plasma may be identified by screening whole blood donations and by examining patients convalescing from specific diseases or vaccinated individuals, e.g. veterinary students who have received rabies vaccine or military recruits who have been immunized with tetanus toxoid. Unnecessary immunizations can be avoided by this approach. The following are examples of medically useful plasma: - Antibody-rich plasma for control reagents in diagnostic tests, such as those for anti-HIV, hepatitis A and B, cytomegalovirus, rubella, measles and uncommon infectious agents; plasma should be collected in appropriately isolated premises when products are being prepared that are known to be capable of transmitting infection. - Plasma containing antibodies to human cellular and serum antigens of diagnostic use, for example in HLA (human leukocyte antigen) typing reagents, erythrocyte typing reagents and immunoglobulin allotyping reagents. - Plasma containing reagents useful for diagnostic tests, such as reagin, rheumatoid factors, heterophile antibody and C-reactive protein. - Factor-deficient plasma for specific assays, such as factor-VIII-deficient plasma. Donors who have received factor VIII are at increased risk of transmitting hepatitis B, hepatitis C and HIV; their plasma should therefore be collected in appropriately isolated premises. # 4.7.2 Precautions to be taken when handling blood or blood products containing infectious agents All blood and plasma may contain unknown infectious agents and must be handled accordingly. In addition, special precautions must be taken when handling infected donors and blood products known to contain infectious agents. The precautions to be taken might include: - isolation by means of the appropriate timing or location of the procedures, special labelling and quarantine of the products collected, use of protective packaging with double wrapping in impervious plastic; - disinfection of all work surfaces and equipment with a disinfectant of known efficacy, such as freshly prepared 0.25% sodium hypochlorite solution; - protection of staff by means of adequate training, avoidance of aerosols and use of gloves, gowns, masks and eye protection; it is strongly recommended that such staff also be protected by immunization with hepatitis B vaccine; - fulfilment of the labelling, shipping and waste-disposal requirements appropriate to the etiological agents in question. # 4.7.3 Immunization of donors There is a clinically valid need for specific immunoglobulins and plasma for therapeutic, prophylactic and diagnostic uses. Deliberate immunization of healthy volunteers may be necessary in addition to collection of plasma from convalescent patients and donors selected by screening for high levels of specific antibodies. The immunization of donors requires informed consent in writing and shall take into consideration all the requirements of the previous sections. Donors shall be immunized with antigens only when sufficient supplies of material of suitable quality cannot be obtained from other appropriate donors, from donations selected by screening, or in the form of safe and efficacious licensed monoclonal antibodies. Donors must be fully informed of the risk of any proposed immunization procedure, and pressure shall not be brought to bear on a donor to agree to immunization. Women capable of child-bearing shall not be immunized with erythrocytes or other antigens that may produce antibodies harmful to the fetus. Donors of blood and those undergoing plasmapheresis shall, if necessary, undergo investigations that can reveal hypersensitivity to a proposed antigen (see also Part B, section 6). An approved schedule of immunization shall be used. Every effort shall be made to use the minimum dose of antigen and number of injections. In any immunization programme, the following shall be taken into consideration as a minimum: (a) the antibody assay; (b) the minimum level of antibody required; (c) data showing that the dose, the intervals between injections and the total dosage proposed for each antigen are appropriate; and (d) the criteria for considering a prospective donor a non-responder for a given antigen. No donor shall be hyperimmunized with more than one immunizing preparation unless the safety of the multiple procedure is demonstrated. Potential donors should be: - informed by a licensed physician of the procedures, risks and possible sequelae and how to report any adverse effects, and encouraged to take part in a free discussion (which, in some countries, is achieved in small groups of potential donors); - encouraged to seek advice from their family doctor before agreeing to immunization; - informed that any licensed physician of their choice will be sent all the information about the proposed immunization procedure; - informed that they are free to withdraw consent at any time. All vaccines used for immunizing donors shall be registered or recognized by the national health authority, but may be administered at doses and with schedules differing from those recommended for routine prophylactic immunization. Erythrocyte and other cellular antigens shall be obtained from an establishment approved by the national control authority. Donors shall be observed for approximately 30 min following any immunization in order to determine whether an adverse reaction has taken place. Because reactions often occur 2-3 h after immunization, donors shall be advised of this possibility and instructed to contact the facility's physician if a reaction is suspected in the first 12 h after immunization. Reactions may be local or systemic. Local reactions, which may be immediate or delayed, take the form of redness, swelling or pain at the injection site. Systemic reactions may include fever, chills, malaise, arthralgia, anorexia, shortness of breath and wheezing. ### 4.7.4 Immunization with human erythrocytes Erythrocyte donors. A donor of erythrocytes for the purposes of immunization shall meet all the general health criteria for donors (see sections 4.3 and 4.4). In addition, the donor shall not have had a blood transfusion at any time. The volume of erythrocytes drawn from a donor should not exceed 450-500 ml of whole blood in any eight-week period. At each donation the donor shall be found to be negative for syphilis, HBsAg, anti-HIV, antibody to hepatitis B core antigen (anti-HBc), anti-HCV and antibodies to human T-cell lymphotropic viruses (anti-HTLV). The serum level of aminotransferases should be within normal limits as established by the national control authority. Erythrocyte phenotyping shall be done for ABO as well as for C, D, E, c, e, Kell and Fy^a. Phenotyping for other specificities is often desirable and is recommended especially for Jk^a, Jk^b, Fy^b, S and s. Ideally erythrocytes obtained for immunization purposes should be frozen for at least 12 months before use and the donor should be recalled and retested for anti-HIV, anti-HCV, anti-HBc, HBsAg and anti-HTLV before the stored cells are used for immunization.